@@ -37,9 +37,10 @@ were vectors.
37
37
38
38
`p` can assume any numeric value (even though not all values produce a
39
39
mathematically valid vector norm). `vnorm(A, Inf)` returns the largest value in `abs.(A)`,
40
- whereas `vnorm(A, -Inf)` returns the smallest; `vnorm(A, 0)` matches the behavior of `norm(A, 0)`.
40
+ whereas `vnorm(A, -Inf)` returns the smallest; `vnorm(A, 0)` matches the behavior of
41
+ `LinearAlgebra.norm(A, 0)`.
41
42
42
- See also: [`norm `](@ref)
43
+ See also: [`vtnorm `](@ref)
43
44
"""
44
45
vnorm (A, p:: Real = 2 ; dims= :) = p == 0 ? _norm0 (A, dims) : _vnorm (A, p, dims)
45
46
@@ -69,9 +70,10 @@ Compute the `p`-norm of `A` along the dimensions `dims` as if the corresponding
69
70
were vectors. Threaded.
70
71
71
72
`p` can assume any numeric value (even though not all values produce a
72
- mathematically valid vector norm). `vnorm(A, Inf)` returns the largest value in `abs.(A)`,
73
- whereas `vnorm(A, -Inf)` returns the smallest; `vnorm(A, 0)` matches the behavior of `norm(A, 0)`.
73
+ mathematically valid vector norm). `vtnorm(A, Inf)` returns the largest value in `abs.(A)`,
74
+ whereas `vtnorm(A, -Inf)` returns the smallest; `vnorm(A, 0)` matches the behavior
75
+ of `LinearAlgebra.norm(A, 0)`.
74
76
75
- See also: [`norm `](@ref)
77
+ See also: [`vnorm `](@ref)
76
78
"""
77
79
vtnorm (A, p:: Real = 2 ; dims= :) = p == 0 ? _norm0 (A, dims) : _vtnorm (A, p, dims)
0 commit comments