-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathm-coloring-problem.cpp
71 lines (64 loc) · 1.58 KB
/
m-coloring-problem.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
// { Driver Code Starts
#include <bits/stdc++.h>
using namespace std;
// } Driver Code Ends
// Function to determine if graph can be coloured with at most M colours such
// that no two adjacent vertices of graph are coloured with same colour.
bool isSafe(int node,int color[],bool graph[101][101], int n, int col)
{
for(int i=0;i<n;i++)
{
if(i!=node && graph[node][i]==1 && color[i]==col)
return false;
}
return true;
}
bool solve(int node,int color[],bool graph[101][101], int m, int n)
{
if(node==n)
{
return true;
}
for(int i=1;i<=m;i++)
{
if(isSafe(node,color,graph,n,i))
{
color[node]=i;
if(solve(node+1,color,graph,m,n))
return true;
color[node]=0;
}
}
return false;
}
bool graphColoring(bool graph[101][101], int m, int n) {
// your code here
int color[n]={0};
if(solve(0,color,graph,m,n))
return true;
else
return false;
}
// { Driver Code Starts.
int main() {
int t;
cin >> t;
while (t--) {
int n, m, e;
cin >> n >> m >> e;
int i;
bool graph[101][101];
for (i = 0; i < n; i++) {
memset(graph[i], 0, sizeof(graph[i]));
}
for (i = 0; i < e; i++) {
int a, b;
cin >> a >> b;
graph[a - 1][b - 1] = 1;
graph[b - 1][a - 1] = 1;
}
cout << graphColoring(graph, m, n) << endl;
}
return 0;
}
// } Driver Code Ends