|
1 |
| -import copy |
2 |
| -import json |
3 |
| -import math |
4 |
| -import os |
5 |
| -import pickle |
6 |
| - |
7 |
| -import cv2 |
8 |
| -import numpy as np |
9 |
| -import pycocotools |
10 |
| - |
11 |
| -from torch.utils.data.dataset import Dataset |
12 |
| - |
13 |
| -BODY_PARTS_KPT_IDS = [[1, 8], [8, 9], [9, 10], [1, 11], [11, 12], [12, 13], [1, 2], [2, 3], [3, 4], [2, 16], |
14 |
| - [1, 5], [5, 6], [6, 7], [5, 17], [1, 0], [0, 14], [0, 15], [14, 16], [15, 17]] |
15 |
| - |
16 |
| - |
17 |
| -def get_mask(segmentations, mask): |
18 |
| - for segmentation in segmentations: |
19 |
| - rle = pycocotools.mask.frPyObjects(segmentation, mask.shape[0], mask.shape[1]) |
20 |
| - mask[pycocotools.mask.decode(rle) > 0.5] = 0 |
21 |
| - return mask |
22 |
| - |
23 |
| - |
24 |
| -class CocoTrainDataset(Dataset): |
25 |
| - def __init__(self, labels, images_folder, stride, sigma, paf_thickness, transform=None): |
26 |
| - super().__init__() |
27 |
| - self._images_folder = images_folder |
28 |
| - self._stride = stride |
29 |
| - self._sigma = sigma |
30 |
| - self._paf_thickness = paf_thickness |
31 |
| - self._transform = transform |
32 |
| - with open(labels, 'rb') as f: |
33 |
| - self._labels = pickle.load(f) |
34 |
| - |
35 |
| - def __getitem__(self, idx): |
36 |
| - label = copy.deepcopy(self._labels[idx]) # label modified in transform |
37 |
| - image = cv2.imread(os.path.join(self._images_folder, label['img_paths']), cv2.IMREAD_COLOR) |
38 |
| - mask = np.ones(shape=(label['img_height'], label['img_width']), dtype=np.float32) |
39 |
| - mask = get_mask(label['segmentations'], mask) |
40 |
| - sample = { |
41 |
| - 'label': label, |
42 |
| - 'image': image, |
43 |
| - 'mask': mask |
44 |
| - } |
45 |
| - if self._transform: |
46 |
| - sample = self._transform(sample) |
47 |
| - |
48 |
| - mask = cv2.resize(sample['mask'], dsize=None, fx=1/self._stride, fy=1/self._stride, interpolation=cv2.INTER_AREA) |
49 |
| - keypoint_maps = self._generate_keypoint_maps(sample) |
50 |
| - sample['keypoint_maps'] = keypoint_maps |
51 |
| - keypoint_mask = np.zeros(shape=keypoint_maps.shape, dtype=np.float32) |
52 |
| - for idx in range(keypoint_mask.shape[0]): |
53 |
| - keypoint_mask[idx] = mask |
54 |
| - sample['keypoint_mask'] = keypoint_mask |
55 |
| - |
56 |
| - paf_maps = self._generate_paf_maps(sample) |
57 |
| - sample['paf_maps'] = paf_maps |
58 |
| - paf_mask = np.zeros(shape=paf_maps.shape, dtype=np.float32) |
59 |
| - for idx in range(paf_mask.shape[0]): |
60 |
| - paf_mask[idx] = mask |
61 |
| - sample['paf_mask'] = paf_mask |
62 |
| - |
63 |
| - image = sample['image'].astype(np.float32) |
64 |
| - image = (image - 128) / 256 |
65 |
| - sample['image'] = image.transpose((2, 0, 1)) |
66 |
| - del sample['label'] |
67 |
| - return sample |
68 |
| - |
69 |
| - def __len__(self): |
70 |
| - return len(self._labels) |
71 |
| - |
72 |
| - def _generate_keypoint_maps(self, sample): |
73 |
| - n_keypoints = 18 |
74 |
| - n_rows, n_cols, _ = sample['image'].shape |
75 |
| - keypoint_maps = np.zeros(shape=(n_keypoints + 1, |
76 |
| - n_rows // self._stride, n_cols // self._stride), dtype=np.float32) # +1 for bg |
77 |
| - |
78 |
| - label = sample['label'] |
79 |
| - for keypoint_idx in range(n_keypoints): |
80 |
| - keypoint = label['keypoints'][keypoint_idx] |
81 |
| - if keypoint[2] <= 1: |
82 |
| - self._add_gaussian(keypoint_maps[keypoint_idx], keypoint[0], keypoint[1], self._stride, self._sigma) |
83 |
| - for another_annotation in label['processed_other_annotations']: |
84 |
| - keypoint = another_annotation['keypoints'][keypoint_idx] |
85 |
| - if keypoint[2] <= 1: |
86 |
| - self._add_gaussian(keypoint_maps[keypoint_idx], keypoint[0], keypoint[1], self._stride, self._sigma) |
87 |
| - keypoint_maps[-1] = 1 - keypoint_maps.max(axis=0) |
88 |
| - return keypoint_maps |
89 |
| - |
90 |
| - def _add_gaussian(self, keypoint_map, x, y, stride, sigma): |
91 |
| - n_sigma = 4 |
92 |
| - tl = [int(x - n_sigma * sigma), int(y - n_sigma * sigma)] |
93 |
| - tl[0] = max(tl[0], 0) |
94 |
| - tl[1] = max(tl[1], 0) |
95 |
| - |
96 |
| - br = [int(x + n_sigma * sigma), int(y + n_sigma * sigma)] |
97 |
| - map_h, map_w = keypoint_map.shape |
98 |
| - br[0] = min(br[0], map_w * stride) |
99 |
| - br[1] = min(br[1], map_h * stride) |
100 |
| - |
101 |
| - shift = stride / 2 - 0.5 |
102 |
| - for map_y in range(tl[1] // stride, br[1] // stride): |
103 |
| - for map_x in range(tl[0] // stride, br[0] // stride): |
104 |
| - d2 = (map_x * stride + shift - x) * (map_x * stride + shift - x) + \ |
105 |
| - (map_y * stride + shift - y) * (map_y * stride + shift - y) |
106 |
| - exponent = d2 / 2 / sigma / sigma |
107 |
| - if exponent > 4.6052: # threshold, ln(100), ~0.01 |
108 |
| - continue |
109 |
| - keypoint_map[map_y, map_x] += math.exp(-exponent) |
110 |
| - if keypoint_map[map_y, map_x] > 1: |
111 |
| - keypoint_map[map_y, map_x] = 1 |
112 |
| - |
113 |
| - def _generate_paf_maps(self, sample): |
114 |
| - n_pafs = len(BODY_PARTS_KPT_IDS) |
115 |
| - n_rows, n_cols, _ = sample['image'].shape |
116 |
| - paf_maps = np.zeros(shape=(n_pafs * 2, n_rows // self._stride, n_cols // self._stride), dtype=np.float32) |
117 |
| - |
118 |
| - label = sample['label'] |
119 |
| - for paf_idx in range(n_pafs): |
120 |
| - keypoint_a = label['keypoints'][BODY_PARTS_KPT_IDS[paf_idx][0]] |
121 |
| - keypoint_b = label['keypoints'][BODY_PARTS_KPT_IDS[paf_idx][1]] |
122 |
| - if keypoint_a[2] <= 1 and keypoint_b[2] <= 1: |
123 |
| - self._set_paf(paf_maps[paf_idx * 2:paf_idx * 2 + 2], |
124 |
| - keypoint_a[0], keypoint_a[1], keypoint_b[0], keypoint_b[1], |
125 |
| - self._stride, self._paf_thickness) |
126 |
| - for another_annotation in label['processed_other_annotations']: |
127 |
| - keypoint_a = another_annotation['keypoints'][BODY_PARTS_KPT_IDS[paf_idx][0]] |
128 |
| - keypoint_b = another_annotation['keypoints'][BODY_PARTS_KPT_IDS[paf_idx][1]] |
129 |
| - if keypoint_a[2] <= 1 and keypoint_b[2] <= 1: |
130 |
| - self._set_paf(paf_maps[paf_idx * 2:paf_idx * 2 + 2], |
131 |
| - keypoint_a[0], keypoint_a[1], keypoint_b[0], keypoint_b[1], |
132 |
| - self._stride, self._paf_thickness) |
133 |
| - return paf_maps |
134 |
| - |
135 |
| - def _set_paf(self, paf_map, x_a, y_a, x_b, y_b, stride, thickness): |
136 |
| - x_a /= stride |
137 |
| - y_a /= stride |
138 |
| - x_b /= stride |
139 |
| - y_b /= stride |
140 |
| - x_ba = x_b - x_a |
141 |
| - y_ba = y_b - y_a |
142 |
| - _, h_map, w_map = paf_map.shape |
143 |
| - x_min = int(max(min(x_a, x_b) - thickness, 0)) |
144 |
| - x_max = int(min(max(x_a, x_b) + thickness, w_map)) |
145 |
| - y_min = int(max(min(y_a, y_b) - thickness, 0)) |
146 |
| - y_max = int(min(max(y_a, y_b) + thickness, h_map)) |
147 |
| - norm_ba = (x_ba * x_ba + y_ba * y_ba) ** 0.5 |
148 |
| - if norm_ba < 1e-7: # Same points, no paf |
149 |
| - return |
150 |
| - x_ba /= norm_ba |
151 |
| - y_ba /= norm_ba |
152 |
| - |
153 |
| - for y in range(y_min, y_max): |
154 |
| - for x in range(x_min, x_max): |
155 |
| - x_ca = x - x_a |
156 |
| - y_ca = y - y_a |
157 |
| - d = math.fabs(x_ca * y_ba - y_ca * x_ba) |
158 |
| - if d <= thickness: |
159 |
| - paf_map[0, y, x] = x_ba |
160 |
| - paf_map[1, y, x] = y_ba |
161 |
| - |
162 |
| - |
163 |
| -class CocoValDataset(Dataset): |
164 |
| - def __init__(self, labels, images_folder): |
165 |
| - super().__init__() |
166 |
| - with open(labels, 'r') as f: |
167 |
| - self._labels = json.load(f) |
168 |
| - self._images_folder = images_folder |
169 |
| - |
170 |
| - def __getitem__(self, idx): |
171 |
| - file_name = self._labels['images'][idx]['file_name'] |
172 |
| - img = cv2.imread(os.path.join(self._images_folder, file_name), cv2.IMREAD_COLOR) |
173 |
| - return { |
174 |
| - 'img': img, |
175 |
| - 'file_name': file_name |
176 |
| - } |
177 |
| - |
178 |
| - def __len__(self): |
179 |
| - return len(self._labels['images']) |
| 1 | +import copy |
| 2 | +import json |
| 3 | +import math |
| 4 | +import os |
| 5 | +import pickle |
| 6 | + |
| 7 | +import cv2 |
| 8 | +import numpy as np |
| 9 | +import pycocotools |
| 10 | + |
| 11 | +from torch.utils.data.dataset import Dataset |
| 12 | + |
| 13 | +BODY_PARTS_KPT_IDS = [[1, 8], [8, 9], [9, 10], [1, 11], [11, 12], [12, 13], [1, 2], [2, 3], [3, 4], [2, 16], |
| 14 | + [1, 5], [5, 6], [6, 7], [5, 17], [1, 0], [0, 14], [0, 15], [14, 16], [15, 17]] |
| 15 | + |
| 16 | + |
| 17 | +def get_mask(segmentations, mask): |
| 18 | + for segmentation in segmentations: |
| 19 | + rle = pycocotools.mask.frPyObjects(segmentation, mask.shape[0], mask.shape[1]) |
| 20 | + mask[pycocotools.mask.decode(rle) > 0.5] = 0 |
| 21 | + return mask |
| 22 | + |
| 23 | + |
| 24 | +class CocoTrainDataset(Dataset): |
| 25 | + def __init__(self, labels, images_folder, stride, sigma, paf_thickness, transform=None): |
| 26 | + super().__init__() |
| 27 | + self._images_folder = images_folder |
| 28 | + self._stride = stride |
| 29 | + self._sigma = sigma |
| 30 | + self._paf_thickness = paf_thickness |
| 31 | + self._transform = transform |
| 32 | + with open(labels, 'rb') as f: |
| 33 | + self._labels = pickle.load(f) |
| 34 | + |
| 35 | + def __getitem__(self, idx): |
| 36 | + label = copy.deepcopy(self._labels[idx]) # label modified in transform |
| 37 | + image = cv2.imread(os.path.join(self._images_folder, label['img_paths']), cv2.IMREAD_COLOR) |
| 38 | + mask = np.ones(shape=(label['img_height'], label['img_width']), dtype=np.float32) |
| 39 | + mask = get_mask(label['segmentations'], mask) |
| 40 | + sample = { |
| 41 | + 'label': label, |
| 42 | + 'image': image, |
| 43 | + 'mask': mask |
| 44 | + } |
| 45 | + if self._transform: |
| 46 | + sample = self._transform(sample) |
| 47 | + |
| 48 | + mask = cv2.resize(sample['mask'], dsize=None, fx=1/self._stride, fy=1/self._stride, interpolation=cv2.INTER_AREA) |
| 49 | + keypoint_maps = self._generate_keypoint_maps(sample) |
| 50 | + sample['keypoint_maps'] = keypoint_maps |
| 51 | + keypoint_mask = np.zeros(shape=keypoint_maps.shape, dtype=np.float32) |
| 52 | + for idx in range(keypoint_mask.shape[0]): |
| 53 | + keypoint_mask[idx] = mask |
| 54 | + sample['keypoint_mask'] = keypoint_mask |
| 55 | + |
| 56 | + paf_maps = self._generate_paf_maps(sample) |
| 57 | + sample['paf_maps'] = paf_maps |
| 58 | + paf_mask = np.zeros(shape=paf_maps.shape, dtype=np.float32) |
| 59 | + for idx in range(paf_mask.shape[0]): |
| 60 | + paf_mask[idx] = mask |
| 61 | + sample['paf_mask'] = paf_mask |
| 62 | + |
| 63 | + image = sample['image'].astype(np.float32) |
| 64 | + image = (image - 128) / 256 |
| 65 | + sample['image'] = image.transpose((2, 0, 1)) |
| 66 | + del sample['label'] |
| 67 | + return sample |
| 68 | + |
| 69 | + def __len__(self): |
| 70 | + return len(self._labels) |
| 71 | + |
| 72 | + def _generate_keypoint_maps(self, sample): |
| 73 | + n_keypoints = 18 |
| 74 | + n_rows, n_cols, _ = sample['image'].shape |
| 75 | + keypoint_maps = np.zeros(shape=(n_keypoints + 1, |
| 76 | + n_rows // self._stride, n_cols // self._stride), dtype=np.float32) # +1 for bg |
| 77 | + |
| 78 | + label = sample['label'] |
| 79 | + for keypoint_idx in range(n_keypoints): |
| 80 | + keypoint = label['keypoints'][keypoint_idx] |
| 81 | + if keypoint[2] <= 1: |
| 82 | + self._add_gaussian(keypoint_maps[keypoint_idx], keypoint[0], keypoint[1], self._stride, self._sigma) |
| 83 | + for another_annotation in label['processed_other_annotations']: |
| 84 | + keypoint = another_annotation['keypoints'][keypoint_idx] |
| 85 | + if keypoint[2] <= 1: |
| 86 | + self._add_gaussian(keypoint_maps[keypoint_idx], keypoint[0], keypoint[1], self._stride, self._sigma) |
| 87 | + keypoint_maps[-1] = 1 - keypoint_maps.max(axis=0) |
| 88 | + return keypoint_maps |
| 89 | + |
| 90 | + def _add_gaussian(self, keypoint_map, x, y, stride, sigma): |
| 91 | + n_sigma = 4 |
| 92 | + tl = [int(x - n_sigma * sigma), int(y - n_sigma * sigma)] |
| 93 | + tl[0] = max(tl[0], 0) |
| 94 | + tl[1] = max(tl[1], 0) |
| 95 | + |
| 96 | + br = [int(x + n_sigma * sigma), int(y + n_sigma * sigma)] |
| 97 | + map_h, map_w = keypoint_map.shape |
| 98 | + br[0] = min(br[0], map_w * stride) |
| 99 | + br[1] = min(br[1], map_h * stride) |
| 100 | + |
| 101 | + shift = stride / 2 - 0.5 |
| 102 | + for map_y in range(tl[1] // stride, br[1] // stride): |
| 103 | + for map_x in range(tl[0] // stride, br[0] // stride): |
| 104 | + d2 = (map_x * stride + shift - x) * (map_x * stride + shift - x) + \ |
| 105 | + (map_y * stride + shift - y) * (map_y * stride + shift - y) |
| 106 | + exponent = d2 / 2 / sigma / sigma |
| 107 | + if exponent > 4.6052: # threshold, ln(100), ~0.01 |
| 108 | + continue |
| 109 | + keypoint_map[map_y, map_x] += math.exp(-exponent) |
| 110 | + if keypoint_map[map_y, map_x] > 1: |
| 111 | + keypoint_map[map_y, map_x] = 1 |
| 112 | + |
| 113 | + def _generate_paf_maps(self, sample): |
| 114 | + n_pafs = len(BODY_PARTS_KPT_IDS) |
| 115 | + n_rows, n_cols, _ = sample['image'].shape |
| 116 | + paf_maps = np.zeros(shape=(n_pafs * 2, n_rows // self._stride, n_cols // self._stride), dtype=np.float32) |
| 117 | + |
| 118 | + label = sample['label'] |
| 119 | + for paf_idx in range(n_pafs): |
| 120 | + keypoint_a = label['keypoints'][BODY_PARTS_KPT_IDS[paf_idx][0]] |
| 121 | + keypoint_b = label['keypoints'][BODY_PARTS_KPT_IDS[paf_idx][1]] |
| 122 | + if keypoint_a[2] <= 1 and keypoint_b[2] <= 1: |
| 123 | + self._set_paf(paf_maps[paf_idx * 2:paf_idx * 2 + 2], |
| 124 | + keypoint_a[0], keypoint_a[1], keypoint_b[0], keypoint_b[1], |
| 125 | + self._stride, self._paf_thickness) |
| 126 | + for another_annotation in label['processed_other_annotations']: |
| 127 | + keypoint_a = another_annotation['keypoints'][BODY_PARTS_KPT_IDS[paf_idx][0]] |
| 128 | + keypoint_b = another_annotation['keypoints'][BODY_PARTS_KPT_IDS[paf_idx][1]] |
| 129 | + if keypoint_a[2] <= 1 and keypoint_b[2] <= 1: |
| 130 | + self._set_paf(paf_maps[paf_idx * 2:paf_idx * 2 + 2], |
| 131 | + keypoint_a[0], keypoint_a[1], keypoint_b[0], keypoint_b[1], |
| 132 | + self._stride, self._paf_thickness) |
| 133 | + return paf_maps |
| 134 | + |
| 135 | + def _set_paf(self, paf_map, x_a, y_a, x_b, y_b, stride, thickness): |
| 136 | + x_a /= stride |
| 137 | + y_a /= stride |
| 138 | + x_b /= stride |
| 139 | + y_b /= stride |
| 140 | + x_ba = x_b - x_a |
| 141 | + y_ba = y_b - y_a |
| 142 | + _, h_map, w_map = paf_map.shape |
| 143 | + x_min = int(max(min(x_a, x_b) - thickness, 0)) |
| 144 | + x_max = int(min(max(x_a, x_b) + thickness, w_map)) |
| 145 | + y_min = int(max(min(y_a, y_b) - thickness, 0)) |
| 146 | + y_max = int(min(max(y_a, y_b) + thickness, h_map)) |
| 147 | + norm_ba = (x_ba * x_ba + y_ba * y_ba) ** 0.5 |
| 148 | + if norm_ba < 1e-7: # Same points, no paf |
| 149 | + return |
| 150 | + x_ba /= norm_ba |
| 151 | + y_ba /= norm_ba |
| 152 | + |
| 153 | + for y in range(y_min, y_max): |
| 154 | + for x in range(x_min, x_max): |
| 155 | + x_ca = x - x_a |
| 156 | + y_ca = y - y_a |
| 157 | + d = math.fabs(x_ca * y_ba - y_ca * x_ba) |
| 158 | + if d <= thickness: |
| 159 | + paf_map[0, y, x] = x_ba |
| 160 | + paf_map[1, y, x] = y_ba |
| 161 | + |
| 162 | + |
| 163 | +class CocoValDataset(Dataset): |
| 164 | + def __init__(self, labels, images_folder): |
| 165 | + super().__init__() |
| 166 | + with open(labels, 'r') as f: |
| 167 | + self._labels = json.load(f) |
| 168 | + self._images_folder = images_folder |
| 169 | + |
| 170 | + def __getitem__(self, idx): |
| 171 | + file_name = self._labels['images'][idx]['file_name'] |
| 172 | + img = cv2.imread(os.path.join(self._images_folder, file_name), cv2.IMREAD_COLOR) |
| 173 | + return { |
| 174 | + 'img': img, |
| 175 | + 'file_name': file_name |
| 176 | + } |
| 177 | + |
| 178 | + def __len__(self): |
| 179 | + return len(self._labels['images']) |
0 commit comments