-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
118 lines (94 loc) · 3.75 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from flask import Flask, render_template, request, redirect, url_for, flash
import pandas as pd
import joblib
import numpy as np
import os
import matplotlib.pyplot as plt
import seaborn as sns
import io
import base64
app = Flask(__name__)
app.secret_key = 'your-secret-key-here' # Required for flashing messages
# Load the trained model and gender encoder when the application starts
model_path = 'product_category_model.pkl'
encoder_path = 'gender_encoder.pkl'
try:
model = joblib.load(model_path)
gender_encoder = joblib.load(encoder_path)
except Exception as e:
print(f"Error loading model or encoder: {e}")
model = None
gender_encoder = None
def validate_input(age, gender):
"""Validate input data ranges."""
if not isinstance(age, int):
raise ValueError("Age must be a whole number")
if not (0 <= age <= 120):
raise ValueError("Age must be between 0 and 120 years")
if gender.lower() not in ['male', 'female']:
raise ValueError("Gender must be either 'Male' or 'Female'")
@app.route('/')
def index():
"""Render the home page."""
return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def predict():
"""Handle both GET and POST requests for prediction."""
if request.method == 'GET':
return render_template('predict.html')
if request.method == 'POST':
if model is None or gender_encoder is None:
return render_template('error.html',
error="Model or encoder not loaded. Please contact administrator.")
try:
# Get form data
age = request.form.get('age')
gender = request.form.get('gender', '').capitalize()
if not age or not gender:
raise ValueError("Age and gender must be provided")
try:
age = int(age)
except ValueError:
raise ValueError("Age must be a whole number")
# Validate inputs
validate_input(age, gender)
# Encode gender
gender_encoded = gender_encoder.transform([gender])[0]
# Create feature array
features = np.array([[age, gender_encoded]])
# Make prediction
prediction = model.predict(features)[0]
# Get prediction probabilities
probabilities = model.predict_proba(features)[0]
class_labels = model.classes_
# Create sorted list of (category, probability) pairs
prob_list = sorted(zip(class_labels, probabilities),
key=lambda x: x[1],
reverse=True)
return render_template('result.html',
prediction=prediction,
probabilities=prob_list,
age=age,
gender=gender)
except ValueError as ve:
return render_template('error.html',
error=f"Invalid input: {str(ve)}")
except Exception as e:
return render_template('error.html',
error=f"An error occurred: {str(e)}")
@app.route('/about')
def about():
"""Render the about page."""
return render_template('about.html')
@app.errorhandler(404)
def page_not_found(e):
"""Handle 404 errors."""
return render_template('error.html',
error="Page not found. Please return to home page."), 404
@app.errorhandler(500)
def internal_server_error(e):
"""Handle 500 errors."""
return render_template('error.html',
error="Internal server error. Please try again later."), 500
if __name__ == '__main__':
app.run(debug=True)