Skip to content

Commit 1e82b21

Browse files
committed
[back] Get back to the original name to make the PR review procedure easier
1 parent 1e00413 commit 1e82b21

File tree

13 files changed

+67
-67
lines changed

13 files changed

+67
-67
lines changed

autoPyTorch/api/base_task.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@
3434
STRING_TO_TASK_TYPES,
3535
)
3636
from autoPyTorch.datasets.base_dataset import BaseDataset
37-
from autoPyTorch.datasets.resampling_strategy import CrossValTypes, HoldoutTypes
37+
from autoPyTorch.datasets.resampling_strategy import CrossValTypes, HoldoutValTypes
3838
from autoPyTorch.ensemble.ensemble_builder import EnsembleBuilderManager
3939
from autoPyTorch.ensemble.ensemble_selection import EnsembleSelection
4040
from autoPyTorch.ensemble.singlebest_ensemble import SingleBest
@@ -138,7 +138,7 @@ def __init__(
138138
include_components: Optional[Dict] = None,
139139
exclude_components: Optional[Dict] = None,
140140
backend: Optional[Backend] = None,
141-
resampling_strategy: Union[CrossValTypes, HoldoutTypes] = HoldoutTypes.holdout,
141+
resampling_strategy: Union[CrossValTypes, HoldoutValTypes] = HoldoutValTypes.holdout_validation,
142142
resampling_strategy_args: Optional[Dict[str, Any]] = None,
143143
search_space_updates: Optional[HyperparameterSearchSpaceUpdates] = None,
144144
task_type: Optional[str] = None
@@ -1171,7 +1171,7 @@ def predict(
11711171
assert self.ensemble_ is not None, "Load models should error out if no ensemble"
11721172
self.ensemble_ = cast(Union[SingleBest, EnsembleSelection], self.ensemble_)
11731173

1174-
if isinstance(self.resampling_strategy, HoldoutTypes):
1174+
if isinstance(self.resampling_strategy, HoldoutValTypes):
11751175
models = self.models_
11761176
elif isinstance(self.resampling_strategy, CrossValTypes):
11771177
models = self.cv_models_

autoPyTorch/api/tabular_classification.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@
1515
from autoPyTorch.datasets.base_dataset import BaseDataset
1616
from autoPyTorch.datasets.resampling_strategy import (
1717
CrossValTypes,
18-
HoldoutTypes,
18+
HoldoutValTypes,
1919
)
2020
from autoPyTorch.datasets.tabular_dataset import TabularDataset
2121
from autoPyTorch.pipeline.tabular_classification import TabularClassificationPipeline
@@ -72,7 +72,7 @@ def __init__(
7272
delete_output_folder_after_terminate: bool = True,
7373
include_components: Optional[Dict] = None,
7474
exclude_components: Optional[Dict] = None,
75-
resampling_strategy: Union[CrossValTypes, HoldoutTypes] = HoldoutTypes.holdout,
75+
resampling_strategy: Union[CrossValTypes, HoldoutValTypes] = HoldoutValTypes.holdout_validation,
7676
resampling_strategy_args: Optional[Dict[str, Any]] = None,
7777
backend: Optional[Backend] = None,
7878
search_space_updates: Optional[HyperparameterSearchSpaceUpdates] = None

autoPyTorch/api/tabular_regression.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@
1515
from autoPyTorch.datasets.base_dataset import BaseDataset
1616
from autoPyTorch.datasets.resampling_strategy import (
1717
CrossValTypes,
18-
HoldoutTypes,
18+
HoldoutValTypes,
1919
)
2020
from autoPyTorch.datasets.tabular_dataset import TabularDataset
2121
from autoPyTorch.pipeline.tabular_regression import TabularRegressionPipeline
@@ -64,7 +64,7 @@ def __init__(
6464
delete_output_folder_after_terminate: bool = True,
6565
include_components: Optional[Dict] = None,
6666
exclude_components: Optional[Dict] = None,
67-
resampling_strategy: Union[CrossValTypes, HoldoutTypes] = HoldoutTypes.holdout,
67+
resampling_strategy: Union[CrossValTypes, HoldoutValTypes] = HoldoutValTypes.holdout_validation,
6868
resampling_strategy_args: Optional[Dict[str, Any]] = None,
6969
backend: Optional[Backend] = None,
7070
search_space_updates: Optional[HyperparameterSearchSpaceUpdates] = None

autoPyTorch/datasets/base_dataset.py

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@
1414
import torchvision
1515

1616
from autoPyTorch.constants import CLASSIFICATION_OUTPUTS, STRING_TO_OUTPUT_TYPES
17-
from autoPyTorch.datasets.resampling_strategy import CrossValTypes, HoldoutTypes
17+
from autoPyTorch.datasets.resampling_strategy import CrossValTypes, HoldoutValTypes
1818
from autoPyTorch.utils.common import FitRequirement
1919

2020
BaseDatasetInputType = Union[Tuple[np.ndarray, np.ndarray], Dataset]
@@ -69,7 +69,7 @@ def __init__(
6969
dataset_name: Optional[str] = None,
7070
val_tensors: Optional[BaseDatasetInputType] = None,
7171
test_tensors: Optional[BaseDatasetInputType] = None,
72-
resampling_strategy: Union[CrossValTypes, HoldoutTypes] = HoldoutTypes.holdout,
72+
resampling_strategy: Union[CrossValTypes, HoldoutValTypes] = HoldoutValTypes.holdout_validation,
7373
resampling_strategy_args: Optional[Dict[str, Any]] = None,
7474
seed: Optional[int] = 42,
7575
train_transforms: Optional[torchvision.transforms.Compose] = None,
@@ -85,8 +85,8 @@ def __init__(
8585
validation data
8686
test_tensors (An optional tuple of objects that have a __len__ and a __getitem__ attribute):
8787
test data
88-
resampling_strategy (Union[CrossValTypes, HoldoutTypes]),
89-
(default=HoldoutTypes.holdout):
88+
resampling_strategy (Union[CrossValTypes, HoldoutValTypes]),
89+
(default=HoldoutValTypes.holdout_validation):
9090
strategy to split the training data.
9191
resampling_strategy_args (Optional[Dict[str, Any]]):
9292
arguments required for the chosen resampling strategy.
@@ -196,7 +196,7 @@ def _get_indices(self) -> np.ndarray:
196196

197197
def _process_resampling_strategy_args(self) -> None:
198198
if not any(isinstance(self.resampling_strategy, val_type)
199-
for val_type in [HoldoutTypes, CrossValTypes]):
199+
for val_type in [HoldoutValTypes, CrossValTypes]):
200200
raise ValueError(f"resampling_strategy {self.resampling_strategy} is not supported.")
201201

202202
if self.resampling_strategy_args is not None and \
@@ -229,7 +229,7 @@ def get_splits_from_resampling_strategy(self) -> List[Tuple[List[int], List[int]
229229

230230
labels_to_stratify = self.train_tensors[-1] if self.is_stratify else None
231231

232-
if isinstance(self.resampling_strategy, HoldoutTypes):
232+
if isinstance(self.resampling_strategy, HoldoutValTypes):
233233
val_share = self.resampling_strategy_args['val_share']
234234

235235
return self.resampling_strategy(

autoPyTorch/datasets/image_dataset.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@
2323
from autoPyTorch.datasets.base_dataset import BaseDataset
2424
from autoPyTorch.datasets.resampling_strategy import (
2525
CrossValTypes,
26-
HoldoutTypes,
26+
HoldoutValTypes,
2727
)
2828

2929
IMAGE_DATASET_INPUT = Union[Dataset, Tuple[Union[np.ndarray, List[str]], np.ndarray]]
@@ -39,8 +39,8 @@ class ImageDataset(BaseDataset):
3939
validation data
4040
test (Union[Dataset, Tuple[Union[np.ndarray, List[str]], np.ndarray]]):
4141
testing data
42-
resampling_strategy (Union[CrossValTypes, HoldoutTypes]),
43-
(default=HoldoutTypes.holdout):
42+
resampling_strategy (Union[CrossValTypes, HoldoutValTypes]),
43+
(default=HoldoutValTypes.holdout_validation):
4444
strategy to split the training data.
4545
resampling_strategy_args (Optional[Dict[str, Any]]):
4646
arguments required for the chosen resampling strategy.
@@ -56,7 +56,7 @@ def __init__(self,
5656
train: IMAGE_DATASET_INPUT,
5757
val: Optional[IMAGE_DATASET_INPUT] = None,
5858
test: Optional[IMAGE_DATASET_INPUT] = None,
59-
resampling_strategy: Union[CrossValTypes, HoldoutTypes] = HoldoutTypes.holdout,
59+
resampling_strategy: Union[CrossValTypes, HoldoutValTypes] = HoldoutValTypes.holdout_validation,
6060
resampling_strategy_args: Optional[Dict[str, Any]] = None,
6161
seed: Optional[int] = 42,
6262
train_transforms: Optional[torchvision.transforms.Compose] = None,

autoPyTorch/datasets/resampling_strategy.py

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ class _ResamplingStrategyArgs(NamedTuple):
2525

2626
class HoldoutFuncs():
2727
@staticmethod
28-
def holdout(
28+
def holdout_validation(
2929
random_state: np.random.RandomState,
3030
val_share: float,
3131
indices: np.ndarray,
@@ -51,7 +51,7 @@ class CrossValFuncs():
5151
}
5252

5353
@staticmethod
54-
def k_fold(
54+
def k_fold_cross_validation(
5555
random_state: np.random.RandomState,
5656
num_splits: int,
5757
indices: np.ndarray,
@@ -106,18 +106,18 @@ class CrossValTypes(Enum):
106106
and is not supposed to be instantiated.
107107
108108
Examples: This class is supposed to be used as follows
109-
>>> cv_type = CrossValTypes.k_fold
109+
>>> cv_type = CrossValTypes.k_fold_cross_validation
110110
>>> print(cv_type.name)
111111
112-
k_fold
112+
k_fold_cross_validation
113113
114114
>>> for cross_val_type in CrossValTypes:
115115
print(cross_val_type.name, cross_val_type.value)
116116
117-
k_fold functools.partial(<function CrossValFuncs.k_fold at ...>)
117+
k_fold_cross_validation functools.partial(<function CrossValFuncs.k_fold_cross_validation at ...>)
118118
time_series <function CrossValFuncs.time_series>
119119
"""
120-
k_fold = partial(CrossValFuncs.k_fold)
120+
k_fold_cross_validation = partial(CrossValFuncs.k_fold_cross_validation)
121121
time_series = partial(CrossValFuncs.time_series)
122122

123123
def __call__(
@@ -153,31 +153,31 @@ def __call__(
153153
)
154154

155155

156-
class HoldoutTypes(Enum):
156+
class HoldoutValTypes(Enum):
157157
"""The type of holdout validation
158158
159159
This class is used to specify the holdout validation function
160160
and is not supposed to be instantiated.
161161
162162
Examples: This class is supposed to be used as follows
163-
>>> holdout_type = HoldoutTypes.holdout
163+
>>> holdout_type = HoldoutValTypes.holdout_validation
164164
>>> print(holdout_type.name)
165165
166-
holdout
166+
holdout_validation
167167
168168
>>> print(holdout_type.value)
169169
170-
functools.partial(<function HoldoutTypes.holdout at ...>)
170+
functools.partial(<function HoldoutValTypes.holdout_validation at ...>)
171171
172-
>>> for holdout_type in HoldoutTypes:
172+
>>> for holdout_type in HoldoutValTypes:
173173
print(holdout_type.name)
174174
175-
holdout
175+
holdout_validation
176176
177-
Additionally, HoldoutTypes.<function> can be called directly.
177+
Additionally, HoldoutValTypes.<function> can be called directly.
178178
"""
179179

180-
holdout = partial(HoldoutFuncs.holdout)
180+
holdout = partial(HoldoutFuncs.holdout_validation)
181181

182182
def __call__(
183183
self,

autoPyTorch/datasets/tabular_dataset.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@
2020
from autoPyTorch.datasets.base_dataset import BaseDataset
2121
from autoPyTorch.datasets.resampling_strategy import (
2222
CrossValTypes,
23-
HoldoutTypes,
23+
HoldoutValTypes,
2424
)
2525

2626

@@ -44,8 +44,8 @@ class TabularDataset(BaseDataset):
4444
Y (Union[np.ndarray, pd.Series]): training data targets.
4545
X_test (Optional[Union[np.ndarray, pd.DataFrame]]): input testing data.
4646
Y_test (Optional[Union[np.ndarray, pd.DataFrame]]): testing data targets
47-
resampling_strategy (Union[CrossValTypes, HoldoutTypes]),
48-
(default=HoldoutTypes.holdout):
47+
resampling_strategy (Union[CrossValTypes, HoldoutValTypes]),
48+
(default=HoldoutValTypes.holdout_validation):
4949
strategy to split the training data.
5050
resampling_strategy_args (Optional[Dict[str, Any]]):
5151
arguments required for the chosen resampling strategy.
@@ -66,7 +66,7 @@ def __init__(self,
6666
Y: Union[np.ndarray, pd.Series],
6767
X_test: Optional[Union[np.ndarray, pd.DataFrame]] = None,
6868
Y_test: Optional[Union[np.ndarray, pd.DataFrame]] = None,
69-
resampling_strategy: Union[CrossValTypes, HoldoutTypes] = HoldoutTypes.holdout,
69+
resampling_strategy: Union[CrossValTypes, HoldoutValTypes] = HoldoutValTypes.holdout_validation,
7070
resampling_strategy_args: Optional[Dict[str, Any]] = None,
7171
seed: Optional[int] = 42,
7272
train_transforms: Optional[torchvision.transforms.Compose] = None,

autoPyTorch/datasets/time_series_dataset.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
import torchvision.transforms
66

77
from autoPyTorch.datasets.base_dataset import BaseDataset
8-
from autoPyTorch.datasets.resampling_strategy import CrossValTypes, HoldoutTypes
8+
from autoPyTorch.datasets.resampling_strategy import CrossValTypes, HoldoutValTypes
99

1010
TIME_SERIES_FORECASTING_INPUT = Tuple[np.ndarray, np.ndarray] # currently only numpy arrays are supported
1111
TIME_SERIES_REGRESSION_INPUT = Tuple[np.ndarray, np.ndarray]
@@ -17,9 +17,9 @@ def _check_prohibited_resampling() -> None:
1717
1818
Args:
1919
task_name (str): Typically the Dataset class name
20-
resampling_strategy (Union[CrossValTypes, HoldoutTypes]):
20+
resampling_strategy (Union[CrossValTypes, HoldoutValTypes]):
2121
The splitting function
22-
args (Union[CrossValTypes, HoldoutTypes]):
22+
args (Union[CrossValTypes, HoldoutValTypes]):
2323
The list of cross validation functions and
2424
holdout validation functions that are suitable for the given task
2525
@@ -39,7 +39,7 @@ def __init__(self,
3939
n_steps: int,
4040
train: TIME_SERIES_FORECASTING_INPUT,
4141
val: Optional[TIME_SERIES_FORECASTING_INPUT] = None,
42-
resampling_strategy: Union[CrossValTypes, HoldoutTypes] = HoldoutTypes.holdout,
42+
resampling_strategy: Union[CrossValTypes, HoldoutValTypes] = HoldoutValTypes.holdout_validation,
4343
resampling_strategy_args: Optional[Dict[str, Any]] = None,
4444
seed: Optional[int] = 42,
4545
train_transforms: Optional[torchvision.transforms.Compose] = None,

autoPyTorch/optimizer/smbo.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@
1919
from autoPyTorch.datasets.base_dataset import BaseDataset
2020
from autoPyTorch.datasets.resampling_strategy import (
2121
CrossValTypes,
22-
HoldoutTypes,
22+
HoldoutValTypes,
2323
)
2424
from autoPyTorch.ensemble.ensemble_builder import EnsembleBuilderManager
2525
from autoPyTorch.evaluation.tae import ExecuteTaFuncWithQueue, get_cost_of_crash
@@ -92,7 +92,7 @@ def __init__(self,
9292
pipeline_config: typing.Dict[str, typing.Any],
9393
start_num_run: int = 1,
9494
seed: int = 1,
95-
resampling_strategy: typing.Union[HoldoutTypes, CrossValTypes] = HoldoutTypes.holdout,
95+
resampling_strategy: typing.Union[HoldoutValTypes, CrossValTypes] = HoldoutValTypes.holdout_validation,
9696
resampling_strategy_args: typing.Optional[typing.Dict[str, typing.Any]] = None,
9797
include: typing.Optional[typing.Dict[str, typing.Any]] = None,
9898
exclude: typing.Optional[typing.Dict[str, typing.Any]] = None,

examples/tabular/40_advanced/example_resampling_strategy.py

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@
2424
import sklearn.model_selection
2525

2626
from autoPyTorch.api.tabular_classification import TabularClassificationTask
27-
from autoPyTorch.datasets.resampling_strategy import CrossValTypes, HoldoutTypes
27+
from autoPyTorch.datasets.resampling_strategy import CrossValTypes, HoldoutValTypes
2828

2929

3030
if __name__ == '__main__':
@@ -48,11 +48,11 @@
4848
# To maintain logs of the run, set the next two as False
4949
delete_tmp_folder_after_terminate=True,
5050
delete_output_folder_after_terminate=True,
51-
# 'HoldoutTypes.holdout' with 'val_share': 0.33
51+
# 'HoldoutValTypes.holdout_validation' with 'val_share': 0.33
5252
# is the default argument setting for TabularClassificationTask.
5353
# It is explicitly specified in this example for demonstrational
5454
# purpose.
55-
resampling_strategy=HoldoutTypes.holdout,
55+
resampling_strategy=HoldoutValTypes.holdout_validation,
5656
resampling_strategy_args={'val_share': 0.33}
5757
)
5858

@@ -90,7 +90,7 @@
9090
# To maintain logs of the run, set the next two as False
9191
delete_tmp_folder_after_terminate=True,
9292
delete_output_folder_after_terminate=True,
93-
resampling_strategy=CrossValTypes.k_fold,
93+
resampling_strategy=CrossValTypes.k_fold_cross_validation,
9494
resampling_strategy_args={'num_splits': 3}
9595
)
9696

@@ -130,8 +130,8 @@
130130
delete_output_folder_after_terminate=True,
131131
# For demonstration purposes, we use
132132
# Stratified hold out validation. However,
133-
# one can also use CrossValTypes.k_fold.
134-
resampling_strategy=HoldoutTypes.holdout,
133+
# one can also use CrossValTypes.k_fold_cross_validation.
134+
resampling_strategy=HoldoutValTypes.holdout_validation,
135135
resampling_strategy_args={'val_share': 0.33, 'stratify': True}
136136
)
137137

0 commit comments

Comments
 (0)