@@ -244,19 +244,35 @@ The algorithmic complexity of the conversion process is:
244244
245245### Implementation Examples
246246
247- #### Standard Conversion (1536 bytes)
248- Given: bytes = 1536, base = 1024 (binary)
247+ #### Default Conversion (1536 bytes)
248+ Given: bytes = 1536, default settings (base = 10, JEDEC standard)
249+
250+ 1 . Calculate exponent: $e = \lfloor \log_ {1000}(1536) \rfloor = \lfloor 1.062 \rfloor = 1$
251+ 2 . Calculate value: $\text{value} = \frac{1536}{1000^1} = 1.536$
252+ 3 . Apply rounding (2 decimal places): $1.536 \rightarrow 1.54$
253+ 4 . Result: "1.54 kB"
254+
255+ #### Binary Conversion (1536 bytes)
256+ Given: bytes = 1536, base = 2 (IEC standard)
249257
2502581 . Calculate exponent: $e = \lfloor \log_ {1024}(1536) \rfloor = \lfloor 1.084 \rfloor = 1$
2512592 . Calculate value: $\text{value} = \frac{1536}{1024^1} = 1.5$
2522603 . Result: "1.5 KiB"
253261
254- #### Bits Conversion (1024 bytes)
255- Given: bytes = 1024, bits = true, base = 1024
262+ #### Bits Conversion with Default Base (1024 bytes)
263+ Given: bytes = 1024, bits = true, default settings (base = 10)
264+
265+ 1 . Calculate exponent: $e = \lfloor \log_ {1000}(1024) \rfloor = \lfloor 1.003 \rfloor = 1$
266+ 2 . Calculate value: $\text{value} = \frac{1024 \cdot 8}{1000^1} = 8.192$
267+ 3 . Apply rounding (2 decimal places): $8.192 \rightarrow 8.19$
268+ 4 . Result: "8.19 kbit"
269+
270+ #### Bits Conversion with Binary Base (1024 bytes)
271+ Given: bytes = 1024, bits = true, base = 2
256272
2572731 . Calculate exponent: $e = \lfloor \log_ {1024}(1024) \rfloor = 1$
2582742 . Calculate value: $\text{value} = \frac{1024 \cdot 8}{1024^1} = 8$
259- 3 . Result: "8 Kib "
275+ 3 . Result: "8 Kibit "
260276
261277## Data Flow
262278
0 commit comments