@@ -144,16 +144,6 @@ def _df_iter_to_record_batch_reader(
144144 target_schema : pa .Schema | None = None ,
145145 batch_size : int | None = None ,
146146) -> tuple [pa .RecordBatchReader , pa .Schema ]:
147- """
148- Convert an iterable of Pandas DataFrames into a single Arrow RecordBatchReader
149- suitable for a single delta-rs commit. The first *non-empty* DataFrame fixes the schema.
150-
151- Returns
152- -------
153- (reader, schema)
154- reader: pa.RecordBatchReader streaming all chunks as Arrow batches
155- schema: pa.Schema used for conversion
156- """
157147 it = iter (df_iter )
158148
159149 first_df : pd .DataFrame | None = None
@@ -207,19 +197,6 @@ def to_deltalake_streaming(
207197 max_rows_per_file : int | None = None ,
208198 target_file_size : int | None = None ,
209199) -> None :
210- """
211- Write an iterable/generator of Pandas DataFrames to S3 as a Delta Lake table
212- in a SINGLE atomic commit (one table version).
213-
214- Use this for large "restatements" that are produced in chunks. Semantics mirror
215- `to_deltalake` (partitioning, schema handling, S3 locking, etc.).
216-
217- Notes
218- -----
219- - The schema is fixed by the first *non-empty* chunk (plus any `dtype` coercions).
220- - All `partition_cols` must be present in every non-empty chunk.
221- - Prefer `lock_dynamodb_table` over `s3_allow_unsafe_rename=True` on S3.
222- """
223200 dtype = dtype or {}
224201
225202 storage_options = _set_default_storage_options_kwargs (
0 commit comments