diff --git a/README.md b/README.md
index e1c723e6..72cd998b 100644
--- a/README.md
+++ b/README.md
@@ -12,62 +12,96 @@ It is suitable for beginners who want to find clear and concise examples about T
#### 0 - Prerequisite
- [Introduction to Machine Learning](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/ml_introduction.ipynb).
+ [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F0_Prerequisite%2Fml_introduction.ipynb)
- [Introduction to MNIST Dataset](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/mnist_dataset_intro.ipynb).
+ [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F0_Prerequisite%2Fmnist_dataset_intro.ipynb)
#### 1 - Introduction
-- **Hello World** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/helloworld.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/helloworld.py)). Very simple example to learn how to print "hello world" using TensorFlow.
-- **Basic Operations** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/basic_operations.py)). A simple example that cover TensorFlow basic operations.
-- **TensorFlow Eager API basics** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_eager_api.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/basic_eager_api.py)). Get started with TensorFlow's Eager API.
+- **Hello World** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/helloworld.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F1_Introduction%2Fhelloworld.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/helloworld.py)). Very simple example to learn how to print "hello world" using TensorFlow.
+- **Basic Operations** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F1_Introduction%2Fbasic_operations.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/basic_operations.py)). A simple example that cover TensorFlow basic operations.
+- **TensorFlow Eager API basics** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_eager_api.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F1_Introduction%2Fbasic_eager_api.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/basic_eager_api.py)). Get started with TensorFlow's Eager API.
#### 2 - Basic Models
-- **Linear Regression** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/linear_regression.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression.py)). Implement a Linear Regression with TensorFlow.
-- **Linear Regression (eager api)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/linear_regression_eager_api.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression_eager_api.py)). Implement a Linear Regression using TensorFlow's Eager API.
-- **Logistic Regression** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/logistic_regression.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/logistic_regression.py)). Implement a Logistic Regression with TensorFlow.
-- **Logistic Regression (eager api)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/logistic_regression_eager_api.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/logistic_regression_eager_api.py)). Implement a Logistic Regression using TensorFlow's Eager API.
-- **Nearest Neighbor** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/nearest_neighbor.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/nearest_neighbor.py)). Implement Nearest Neighbor algorithm with TensorFlow.
-- **K-Means** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/kmeans.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/kmeans.py)). Build a K-Means classifier with TensorFlow.
-- **Random Forest** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/random_forest.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/random_forest.py)). Build a Random Forest classifier with TensorFlow.
-- **Gradient Boosted Decision Tree (GBDT)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/gradient_boosted_decision_tree.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/gradient_boosted_decision_tree.py)). Build a Gradient Boosted Decision Tree (GBDT) with TensorFlow.
-- **Word2Vec (Word Embedding)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/word2vec.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/word2vec.py)). Build a Word Embedding Model (Word2Vec) from Wikipedia data, with TensorFlow.
+- **Linear Regression** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/linear_regression.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F2_BasicModels%2Flinear_regression.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression.py)). Implement a Linear Regression with TensorFlow.
+- **Linear Regression (eager api)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/linear_regression_eager_api.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F2_BasicModels%2Flinear_regression_eager_api.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression_eager_api.py)). Implement a Linear Regression using TensorFlow's Eager API.
+- **Logistic Regression** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/logistic_regression.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F2_BasicModels%2Flogistic_regression.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/logistic_regression.py)). Implement a Logistic Regression with TensorFlow.
+- **Logistic Regression (eager api)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/logistic_regression_eager_api.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F2_BasicModels%2Flogistic_regression_eager_api.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/logistic_regression_eager_api.py)). Implement a Logistic Regression using TensorFlow's Eager API.
+- **Nearest Neighbor** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/nearest_neighbor.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F2_BasicModels%2Fnearest_neighbor.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/nearest_neighbor.py)). Implement Nearest Neighbor algorithm with TensorFlow.
+- **K-Means** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/kmeans.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F2_BasicModels%2Fkmeans.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/kmeans.py)). Build a K-Means classifier with TensorFlow.
+- **Random Forest** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/random_forest.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F2_BasicModels%2Frandom_forest.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/random_forest.py)). Build a Random Forest classifier with TensorFlow.
+- **Gradient Boosted Decision Tree (GBDT)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/gradient_boosted_decision_tree.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F2_BasicModels%2Fgradient_boosted_decision_tree.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/gradient_boosted_decision_tree.py)). Build a Gradient Boosted Decision Tree (GBDT) with TensorFlow.
+- **Word2Vec (Word Embedding)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/word2vec.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F2_BasicModels%2Fword2vec.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/word2vec.py)). Build a Word Embedding Model (Word2Vec) from Wikipedia data, with TensorFlow.
#### 3 - Neural Networks
##### Supervised
-- **Simple Neural Network** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/neural_network_raw.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/neural_network_raw.py)). Build a simple neural network (a.k.a Multi-layer Perceptron) to classify MNIST digits dataset. Raw TensorFlow implementation.
-- **Simple Neural Network (tf.layers/estimator api)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/neural_network.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/neural_network.py)). Use TensorFlow 'layers' and 'estimator' API to build a simple neural network (a.k.a Multi-layer Perceptron) to classify MNIST digits dataset.
-- **Simple Neural Network (eager api)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/neural_network_eager_api.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/neural_network_eager_api.py)). Use TensorFlow Eager API to build a simple neural network (a.k.a Multi-layer Perceptron) to classify MNIST digits dataset.
-- **Convolutional Neural Network** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/convolutional_network_raw.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/convolutional_network_raw.py)). Build a convolutional neural network to classify MNIST digits dataset. Raw TensorFlow implementation.
-- **Convolutional Neural Network (tf.layers/estimator api)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/convolutional_network.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/convolutional_network.py)). Use TensorFlow 'layers' and 'estimator' API to build a convolutional neural network to classify MNIST digits dataset.
-- **Recurrent Neural Network (LSTM)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/recurrent_network.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py)). Build a recurrent neural network (LSTM) to classify MNIST digits dataset.
-- **Bi-directional Recurrent Neural Network (LSTM)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/bidirectional_rnn.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/bidirectional_rnn.py)). Build a bi-directional recurrent neural network (LSTM) to classify MNIST digits dataset.
-- **Dynamic Recurrent Neural Network (LSTM)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/dynamic_rnn.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/dynamic_rnn.py)). Build a recurrent neural network (LSTM) that performs dynamic calculation to classify sequences of different length.
+- **Simple Neural Network** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/neural_network_raw.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F3_NeuralNetworks%2Fneural_network_raw.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/neural_network_raw.py)). Build a simple neural network (a.k.a Multi-layer Perceptron) to classify MNIST digits dataset. Raw TensorFlow implementation.
+- **Simple Neural Network (tf.layers/estimator api)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/neural_network.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F3_NeuralNetworks%2Fneural_network.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/neural_network.py)). Use TensorFlow 'layers' and 'estimator' API to build a simple neural network (a.k.a Multi-layer Perceptron)
to classify MNIST digits dataset.
+- **Simple Neural Network (eager api)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/neural_network_eager_api.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F3_NeuralNetworks%2Fneural_network_eager_api.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/neural_network_eager_api.py)). Use TensorFlow Eager API to build a simple neural network (a.k.a Multi-layer Perceptron) to classify MNIST digits dataset.
+- **Convolutional Neural Network** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/convolutional_network_raw.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F3_NeuralNetworks%2Fconvolutional_network_raw.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/convolutional_network_raw.py)). Build a convolutional neural network to classify MNIST digits dataset. Raw TensorFlow implementation.
+- **Convolutional Neural Network (tf.layers/estimator api)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/convolutional_network.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F3_NeuralNetworks%2Fconvolutional_network.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/convolutional_network.py)). Use TensorFlow 'layers' and 'estimator' API to build a convolutional neural network
to classify MNIST digits dataset.
+- **Recurrent Neural Network (LSTM)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/recurrent_network.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F3_NeuralNetworks%2Frecurrent_network.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py)). Build a recurrent neural network (LSTM) to classify MNIST digits dataset.
+- **Bi-directional Recurrent Neural Network (LSTM)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/bidirectional_rnn.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F3_NeuralNetworks%2Fbidirectional_rnn.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/bidirectional_rnn.py)). Build a bi-directional recurrent neural network (LSTM) to classify MNIST digits dataset.
+- **Dynamic Recurrent Neural Network (LSTM)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/dynamic_rnn.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F3_NeuralNetworks%2Fdynamic_rnn.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/dynamic_rnn.py)). Build a recurrent neural network (LSTM) that performs dynamic calculation to classify sequences of different length.
##### Unsupervised
-- **Auto-Encoder** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/autoencoder.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/autoencoder.py)). Build an auto-encoder to encode an image to a lower dimension and re-construct it.
-- **Variational Auto-Encoder** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/variational_autoencoder.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/variational_autoencoder.py)). Build a variational auto-encoder (VAE), to encode and generate images from noise.
-- **GAN (Generative Adversarial Networks)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/gan.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/gan.py)). Build a Generative Adversarial Network (GAN) to generate images from noise.
-- **DCGAN (Deep Convolutional Generative Adversarial Networks)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/dcgan.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/dcgan.py)). Build a Deep Convolutional Generative Adversarial Network (DCGAN) to generate images from noise.
+- **Auto-Encoder** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/autoencoder.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F3_NeuralNetworks%2Fautoencoder.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/autoencoder.py)). Build an auto-encoder to encode an image to a lower dimension and re-construct it.
+- **Variational Auto-Encoder** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/variational_autoencoder.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F3_NeuralNetworks%2Fvariational_autoencoder.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/variational_autoencoder.py)). Build a variational auto-encoder (VAE), to encode and generate images from noise.
+- **GAN (Generative Adversarial Networks)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/gan.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F3_NeuralNetworks%2Fgan.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/gan.py)). Build a Generative Adversarial Network (GAN) to generate images from noise.
+- **DCGAN (Deep Convolutional Generative Adversarial Networks)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/dcgan.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F3_NeuralNetworks%2Fdcgan.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/dcgan.py)). Build a Deep Convolutional Generative Adversarial Network (DCGAN) to generate images from noise.
#### 4 - Utilities
-- **Save and Restore a model** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/4_Utils/save_restore_model.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/save_restore_model.py)). Save and Restore a model with TensorFlow.
-- **Tensorboard - Graph and loss visualization** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/4_Utils/tensorboard_basic.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/tensorboard_basic.py)). Use Tensorboard to visualize the computation Graph and plot the loss.
-- **Tensorboard - Advanced visualization** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/4_Utils/tensorboard_advanced.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/tensorboard_advanced.py)). Going deeper into Tensorboard; visualize the variables, gradients, and more...
+- **Save and Restore a model** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/4_Utils/save_restore_model.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F4_Utils%2Fsave_restore_model.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/save_restore_model.py)). Save and Restore a model with TensorFlow.
+- **Tensorboard - Graph and loss visualization** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/4_Utils/tensorboard_basic.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F4_Utils%2Ftensorboard_basic.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/tensorboard_basic.py)). Use Tensorboard to visualize the computation Graph and plot the loss.
+- **Tensorboard - Advanced visualization** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/4_Utils/tensorboard_advanced.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F4_Utils%2Ftensorboard_advanced.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/tensorboard_advanced.py)). Going deeper into Tensorboard; visualize the variables, gradients, and more...
#### 5 - Data Management
-- **Build an image dataset** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/5_DataManagement/build_an_image_dataset.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/5_DataManagement/build_an_image_dataset.py)). Build your own images dataset with TensorFlow data queues, from image folders or a dataset file.
-- **TensorFlow Dataset API** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/5_DataManagement/tensorflow_dataset_api.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/5_DataManagement/tensorflow_dataset_api.py)). Introducing TensorFlow Dataset API for optimizing the input data pipeline.
+- **Build an image dataset** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/5_DataManagement/build_an_image_dataset.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F5_DataManagement%2Fbuild_an_image_dataset.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/5_DataManagement/build_an_image_dataset.py)). Build your own images dataset with TensorFlow data queues, from image folders or a dataset file.
+- **TensorFlow Dataset API** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/5_DataManagement/tensorflow_dataset_api.ipynb)) [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F5_DataManagement%2Ftensorflow_dataset_api.ipynb)
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/5_DataManagement/tensorflow_dataset_api.py)). Introducing TensorFlow Dataset API for optimizing the input data pipeline.
#### 6 - Multi GPU
-- **Basic Operations on multi-GPU** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/6_MultiGPU/multigpu_basics.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/6_MultiGPU/multigpu_basics.py)). A simple example to introduce multi-GPU in TensorFlow.
-- **Train a Neural Network on multi-GPU** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/6_MultiGPU/multigpu_cnn.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/6_MultiGPU/multigpu_cnn.py)). A clear and simple TensorFlow implementation to train a convolutional neural network on multiple GPUs.
+- **Basic Operations on multi-GPU** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/6_MultiGPU/multigpu_basics.ipynb))
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/6_MultiGPU/multigpu_basics.py)). A simple example to introduce multi-GPU in TensorFlow.
+- **Train a Neural Network on multi-GPU** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/6_MultiGPU/multigpu_cnn.ipynb))
+ ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/6_MultiGPU/multigpu_cnn.py)). A clear and simple TensorFlow implementation to train a convolutional neural network on multiple GPUs.
## TensorFlow 2.0
The tutorial index for TF v2 is available here: [TensorFlow 2.0 Examples](tensorflow_v2).
## Dataset
+ [
](https://beta.deepnote.com/launch?template=data-science&url=https%3A%2F%2Fgithub.com%2Faymericdamien%2FTensorFlow-Examples%2Fblob%2Fmaster%2Fnotebooks%2F0_Prerequisite%2Fmnist_dataset_intro.ipynb)
Some examples require MNIST dataset for training and testing. Don't worry, this dataset will automatically be downloaded when running examples.
-MNIST is a database of handwritten digits, for a quick description of that dataset, you can check [this notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/mnist_dataset_intro.ipynb).
+MNIST is a database of handwritten digits,
for a quick description of that dataset, you can check [this notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0_Prerequisite/mnist_dataset_intro.ipynb).
Official Website: [http://yann.lecun.com/exdb/mnist/](http://yann.lecun.com/exdb/mnist/).