-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfind_critical_and_pseudocritical_edges_in_minimum_spanning_tree.go
136 lines (116 loc) · 3.22 KB
/
find_critical_and_pseudocritical_edges_in_minimum_spanning_tree.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
package main
import "sort"
type DisjointSet struct {
parent []int
}
func NewDisjointSet(n int) *DisjointSet {
parent := make([]int, n)
for i := 0; i < n; i++ {
parent[i] = i
}
return &DisjointSet{parent: parent}
}
func (ds *DisjointSet) find(i int) int {
if i == ds.parent[i] {
return i
}
ds.parent[i] = ds.find(ds.parent[i])
return ds.parent[i]
}
func (ds *DisjointSet) union(u, v int) bool {
pu, pv := ds.find(u), ds.find(v)
if pu == pv {
return false
}
ds.parent[pu] = pv
return true
}
func findCriticalAndPseudoCriticalEdges(n int, edges [][]int) [][]int {
graph := make([][][]int, n)
for i := 0; i < n; i++ {
graph[i] = make([][]int, n)
for j := 0; j < n; j++ {
graph[i][j] = make([]int, 2)
}
}
for i := 0; i < len(edges); i++ {
edge := edges[i]
from, to, weight := edge[0], edge[1], edge[2]
graph[from][to][0] = weight
graph[to][from][0] = weight
graph[from][to][1] = i
graph[to][from][1] = i
}
minimumSpanningTree := make([][]int, n)
for i := 0; i < n; i++ {
minimumSpanningTree[i] = []int{}
}
mstEdgeSet := make([]bool, len(edges))
sort.Slice(edges, func(i, j int) bool {
return edges[i][2] < edges[j][2]
})
buildMinimumSpanningTree(n, edges, mstEdgeSet, minimumSpanningTree, graph)
result := make([][]int, 2)
pseudoCriticalEdges := make(map[int]struct{})
criticalEdges := []int{}
// Finding pseudo-critical edges
for i := 0; i < len(edges); i++ {
from, to, weight := edges[i][0], edges[i][1], edges[i][2]
index := graph[from][to][1]
if !mstEdgeSet[index] {
currentSet := make(map[int]struct{})
isPseudoCritical := isPath(from, to, weight, -1, minimumSpanningTree, graph, currentSet)
if isPseudoCritical && len(currentSet) > 0 {
pseudoCriticalEdges[index] = struct{}{}
for idx := range currentSet {
pseudoCriticalEdges[idx] = struct{}{}
}
}
}
}
// Finding critical edges
for i := 0; i < len(edges); i++ {
from, to := edges[i][0], edges[i][1]
index := graph[from][to][1]
_, found := pseudoCriticalEdges[index]
if mstEdgeSet[index] && !found {
criticalEdges = append(criticalEdges, index)
}
}
result[0] = criticalEdges
pseudoCriticalList := []int{}
for idx := range pseudoCriticalEdges {
pseudoCriticalList = append(pseudoCriticalList, idx)
}
result[1] = pseudoCriticalList
return result
}
func isPath(from, to, weight, previous int, minimumSpanningTree [][]int, graph [][][]int, indices map[int]struct{}) bool {
if from == to {
return true
}
for _, neighbor := range minimumSpanningTree[from] {
if previous != neighbor {
if isPath(neighbor, to, weight, from, minimumSpanningTree, graph, indices) {
if graph[from][neighbor][0] == weight {
indices[graph[from][neighbor][1]] = struct{}{}
}
return true
}
}
}
return false
}
func buildMinimumSpanningTree(n int, edges [][]int, mstEdgeSet []bool, minimumSpanningTree [][]int, graph [][][]int) {
weight := 0
ds := NewDisjointSet(n)
for i := 0; i < len(edges); i++ {
if ds.union(edges[i][0], edges[i][1]) {
weight += edges[i][2]
edge := edges[i]
minimumSpanningTree[edge[0]] = append(minimumSpanningTree[edge[0]], edge[1])
minimumSpanningTree[edge[1]] = append(minimumSpanningTree[edge[1]], edge[0])
mstEdgeSet[graph[edge[0]][edge[1]][1]] = true
}
}
}