@@ -15,7 +15,7 @@ initial_conditions = Bit.AUSTRIA2010Q1.initial_conditions
15
15
# We can now initialise the model, by specifying in advance the maximum number of epochs.
16
16
17
17
T = 16
18
- model = Bit. initialise_model (parameters, initial_conditions, T)
18
+ model = Bit. init_model (parameters, initial_conditions, T)
19
19
20
20
21
21
# Note that the it is very simple to inspect the model by typing
@@ -28,7 +28,7 @@ fieldnames(typeof(model.bank))
28
28
29
29
# We can now define a data tracker, which will store the time series of the model.
30
30
31
- data = Bit. initialise_data (model);
31
+ data = Bit. init_data (model);
32
32
33
33
# We can run now the model for a number of epochs and progressively update the data tracker.
34
34
@@ -53,11 +53,12 @@ p7 = plot(data.wages, title = "wages", titlefont = 10)
53
53
p8 = plot (data. euribor, title = " euribor" , titlefont = 10 )
54
54
p9 = plot (data. nominal_gdp ./ data. real_gdp, title = " gdp deflator" , titlefont = 10 )
55
55
56
+
56
57
plot (p1, p2, p3, p4, p5, p6, p7, p8, p9, layout = (3 , 3 ), legend = false )
57
58
58
59
# To run multiple monte-carlo repetitions in parallel we can use
59
60
60
- model = Bit. initialise_model (parameters, initial_conditions, T)
61
+ model = Bit. init_model (parameters, initial_conditions, T)
61
62
data_vector = Bit. run_n_sims (model, 4 )
62
63
63
64
# Note that this will use the number of threads specified when activating the Julia environment.
@@ -96,3 +97,10 @@ p9 = errorline(
96
97
titlefont = 10 ,
97
98
)
98
99
plot (p1, p2, p3, p4, p5, p6, p7, p8, p9, layout = (3 , 3 ), legend = false )
100
+
101
+ plot (p1, p4, p5, p3, p8, p9, layout = (3 , 2 ), legend = false , size = (400 , 600 ), dpi = 300 , left_margin = 3 Plots. mm)
102
+
103
+ plot (p1, p4, p5, p3, p8, p9, layout = (2 , 3 ), legend = false , size = (600 , 400 ), dpi = 300 )# , left_margin = 3Plots.mm)
104
+
105
+
106
+ savefig (" output.png" )
0 commit comments