We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
1 parent 780cde9 commit b040e22Copy full SHA for b040e22
black_it/loss_functions/msm.py
@@ -179,10 +179,10 @@ def compute_loss_1d(
179
180
g = real_mom_1d - sim_mom_1d
181
182
- if self._covariance_mat == "identity":
+ if self._covariance_mat == _CovarianceMatrixType.IDENTITY.value:
183
loss_1d = g.dot(g)
184
return loss_1d
185
- if self._covariance_mat == "inverse_variance":
+ if self._covariance_mat == _CovarianceMatrixType.INVERSE_VARIANCE.value:
186
W = np.diag(
187
1.0 / np.mean((real_mom_1d[None, :] - ensemble_sim_mom_1d) ** 2, axis=0)
188
)
0 commit comments