@@ -4,7 +4,8 @@ @article{altekruger2023conditional
44 year = { 2023} ,
55 journal = { Transactions on Machine Learning Research} ,
66 issn = { 2835-8856} ,
7- awesome-category = { method}
7+ awesome-category = { method} ,
8+ awesome-tags = { diagnostics; theory}
89}
910
1011@inproceedings {arruda2024anamortized ,
@@ -15,7 +16,8 @@ @inproceedings{arruda2024anamortized
1516 awesome-category = { method} ,
1617 awesome-tldr = { Neural posterior estimation for hierarchical models, where the NPE is used in a first stage on a local level and then repeatedly used for global inference leveraging amortization.} ,
1718 awesome-link-paper = { https://openreview.net/forum?id=uCdcXRuHnC} ,
18- awesome-link-code = { https://github.com/arrjon/Amortized-NLME-Models/tree/ICML2024}
19+ awesome-link-code = { https://github.com/arrjon/Amortized-NLME-Models/tree/ICML2024} ,
20+ awesome-tags = { parameter estimation; hierarchical models}
1921}
2022
2123@misc {bahl2024advancing ,
@@ -27,7 +29,8 @@ @misc{bahl2024advancing
2729 primaryclass = { hep-ph} ,
2830 publisher = { arXiv} ,
2931 archiveprefix = { arXiv} ,
30- awesome-category = { application}
32+ awesome-category = { application} ,
33+ awesome-tags = { physics; simulation-based}
3134}
3235
3336@article {bieringer2021measuring ,
@@ -38,7 +41,8 @@ @article{bieringer2021measuring
3841 volume = { 10} ,
3942 pages = { 126} ,
4043 doi = { 10.21468/SciPostPhys.10.6.126} ,
41- awesome-category = { application}
44+ awesome-category = { application} ,
45+ awesome-tags = { simulation-based; physics; parameter estimation}
4246}
4347
4448@article {bischoff2024practical ,
@@ -47,7 +51,8 @@ @article{bischoff2024practical
4751 year = { 2024} ,
4852 journal = { Transactions on Machine Learning Research} ,
4953 issn = { 2835-8856} ,
50- awesome-category = { review}
54+ awesome-category = { method} ,
55+ awesome-tags = { diagnostics; model evaluation}
5156}
5257
5358@misc {cannon2022investigating ,
@@ -59,7 +64,8 @@ @misc{cannon2022investigating
5964 primaryclass = { stat} ,
6065 publisher = { arXiv} ,
6166 archiveprefix = { arXiv} ,
62- awesome-category = { method}
67+ awesome-category = { method} ,
68+ awesome-tags = { diagnostics; misspecification; simulation-based}
6369}
6470
6571@article {cranmer2020frontier ,
@@ -86,7 +92,8 @@ @article{dax2023neural
8692 pages = { 171403} ,
8793 doi = { 10.1103/PhysRevLett.130.171403} ,
8894 awesome-category = { method} ,
89- awesome-link-paper = { https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.171403}
95+ awesome-link-paper = { https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.171403} ,
96+ awesome-tags = { likelihood-based; physics; parameter estimation}
9097}
9198
9299@article {dingeldein2024amortized ,
@@ -96,7 +103,8 @@ @article{dingeldein2024amortized
96103 journal = { bioRxiv : the preprint server for biology} ,
97104 pages = { 2024.07.23.604154} ,
98105 doi = { 10.1101/2024.07.23.604154} ,
99- awesome-category = { application}
106+ awesome-category = { application} ,
107+ awesome-tags = { biology; simulation-based; parameter estimation}
100108}
101109
102110@article {elsemuller2024deep ,
@@ -123,14 +131,16 @@ @article{elsemuller2024sensitivityaware
123131 awesome-tldr = { Proposes a framework for amortized and thus efficient sensitivity analyses on all major dimensions of a Bayesian model.} ,
124132 awesome-link-paper = { https://openreview.net/forum?id=Kxtpa9rvM0} ,
125133 awesome-link-code = { https://github.com/bayesflow-org/SA-ABI} ,
134+ awesome-tags = { sensitivity analysis; simulation-based; meta learning}
126135}
127136
128137@inproceedings {falkiewicz2023calibrating ,
129138 title = { Calibrating Neural Simulation-Based Inference with Differentiable Coverage Probability} ,
130139 booktitle = { Thirty-Seventh Conference on Neural Information Processing Systems} ,
131140 author = { Falkiewicz, Maciej and Takeishi, Naoya and Shekhzadeh, Imahn and Wehenkel, Antoine and Delaunoy, Arnaud and Louppe, Gilles and Kalousis, Alexandros} ,
132141 year = { 2023} ,
133- awesome-category = { method}
142+ awesome-category = { method} ,
143+ awesome-tags = { diagnostics; simulation-based}
134144}
135145
136146@inproceedings {foster2021deep ,
@@ -141,7 +151,7 @@ @inproceedings{foster2021deep
141151 volume = { 139} ,
142152 publisher = { PMLR} ,
143153 awesome-category = { method} ,
144- awesome-tags = { BED ; adaptive design}
154+ awesome-tags = { experimental design ; adaptive design}
145155}
146156
147157@article {ghaderi-kangavari2023general ,
@@ -155,7 +165,7 @@ @article{ghaderi-kangavari2023general
155165 issn = { 2522-0861, 2522-087X} ,
156166 doi = { 10.1007/s42113-023-00167-4} ,
157167 awesome-category = { application} ,
158- awesome-tags = { cognitive modeling} ,
168+ awesome-tags = { cognitive modeling; simulation-based; parameter estimation } ,
159169}
160170
161171@misc {habermann2024amortized ,
@@ -167,7 +177,7 @@ @misc{habermann2024amortized
167177 publisher = { arXiv} ,
168178 archiveprefix = { arXiv} ,
169179 awesome-category = { method} ,
170- awesome-tags = { parameter estimation}
180+ awesome-tags = { parameter estimation; hierarchical models; simulation-based }
171181}
172182
173183@article {heringhaus2022reliable ,
@@ -181,6 +191,7 @@ @article{heringhaus2022reliable
181191 issn = { 1424-8220} ,
182192 doi = { 10.3390/s22145408} ,
183193 awesome-category = { application} ,
194+ awesome-tags = { parameter estimation; simulation-based; engineering}
184195}
185196
186197@misc {lavin2022simulation ,
@@ -217,7 +228,7 @@ @inproceedings{moon2023amortized
217228 publisher = { Association for Computing Machinery} ,
218229 doi = { 10.1145/3544548.3581439} ,
219230 awesome-category = { application} ,
220- awesome-tags = { human-computer interaction}
231+ awesome-tags = { human-computer interaction, simulation-based; user interfaces }
221232}
222233
223234@article {noever-castelos2022model ,
@@ -231,7 +242,8 @@ @article{noever-castelos2022model
231242 issn = { 1095-4244, 1099-1824} ,
232243 doi = { 10.1002/we.2687} ,
233244 awesome-category = { application} ,
234- langid = { english}
245+ langid = { english} ,
246+ awesome-tags = { simulation-based}
235247}
236248
237249@article {papamakarios2021normalizing ,
@@ -258,7 +270,8 @@ @article{radev2021outbreakflow
258270 issn = { 1553-7358} ,
259271 doi = { 10.1371/journal.pcbi.1009472} ,
260272 awesome-category = { application} ,
261- langid = { english}
273+ langid = { english} ,
274+ awesome-tags = { epidemiology; public health; simulation-based}
262275}
263276
264277@article {radev2020bayesflow ,
@@ -272,7 +285,8 @@ @article{radev2020bayesflow
272285 pages = { 1452--1466} ,
273286 issn = { 2162-237X, 2162-2388} ,
274287 doi = { 10.1109/TNNLS.2020.3042395} ,
275- awesome-category = { method}
288+ awesome-category = { method} ,
289+ awesome-tags = { simulation-based; summary learning; parameter estimation}
276290}
277291
278292@article {radev2023amortized ,
@@ -285,7 +299,8 @@ @article{radev2023amortized
285299 pages = { 4903--4917} ,
286300 issn = { 2162-237X, 2162-2388} ,
287301 doi = { 10.1109/TNNLS.2021.3124052} ,
288- awesome-category = { method}
302+ awesome-category = { method} ,
303+ awesome-tags = { model comparison}
289304}
290305
291306@article {radev2023bayesflow ,
@@ -313,7 +328,8 @@ @inproceedings{radev2023jana
313328 volume = { 216} ,
314329 pages = { 1695--1706} ,
315330 publisher = { PMLR} ,
316- awesome-category = { method}
331+ awesome-category = { method} ,
332+ awesome-tags = { joint learning; simulation-based; diagnostics}
317333}
318334
319335@article {sainsbury-dale2024likelihoodfree ,
@@ -328,7 +344,7 @@ @article{sainsbury-dale2024likelihoodfree
328344 doi = { 10.1080/00031305.2023.2249522} ,
329345 awesome-category = { method} ,
330346 langid = { english} ,
331- awesome-tags = { parameter estimation}
347+ awesome-tags = { parameter estimation; point estimation; simulation-based }
332348}
333349
334350@misc {schmitt2023fuse ,
@@ -340,7 +356,8 @@ @misc{schmitt2023fuse
340356 eprint = { 2311.10671} ,
341357 publisher = { arXiv} ,
342358 archiveprefix = { arXiv} ,
343- awesome-category = { method}
359+ awesome-category = { method} ,
360+ awesome-tags = { summary learning; parameter estimation}
344361}
345362
346363@inproceedings {schmitt2024amortized ,
@@ -349,15 +366,17 @@ @inproceedings{schmitt2024amortized
349366 author = { Schmitt, Marvin and Li, Chengkun and Vehtari, Aki and Acerbi, Luigi and B{\"u}rkner, Paul-Christian and Radev, Stefan T.} ,
350367 year = { 2024} ,
351368 publisher = { arXiv} ,
352- awesome-category = { method}
369+ awesome-category = { method} ,
370+ awesome-tags = { likelihood-based; workflow}
353371}
354372
355373@inproceedings {schmitt2024consistency ,
356374 title = { Consistency {{Models}} for {{Scalable}} and {{Fast Simulation-Based Inference}}} ,
357375 booktitle = { Proceedings of the 38th International Conference on Neural Information Processing Systems} ,
358376 author = { Schmitt, Marvin and Pratz, Valentin and K{\"o}the, Ullrich and B{\"u}rkner, Paul-Christian and Radev, Stefan T.} ,
359377 year = { 2024} ,
360- awesome-category = { method}
378+ awesome-category = { method} ,
379+ awesome-tags = { simulation-based}
361380}
362381
363382@inproceedings {schmitt2024detecting ,
@@ -369,7 +388,8 @@ @inproceedings{schmitt2024detecting
369388 publisher = { Springer Nature Switzerland} ,
370389 address = { Cham} ,
371390 awesome-category = { method} ,
372- isbn = { 978-3-031-54605-1}
391+ isbn = { 978-3-031-54605-1} ,
392+ awesome-tags = { diagnostics; workflow}
373393}
374394
375395@inproceedings {schmitt2024leveraging ,
@@ -382,7 +402,8 @@ @inproceedings{schmitt2024leveraging
382402 volume = { 235} ,
383403 pages = { 43723--43741} ,
384404 publisher = { PMLR} ,
385- awesome-category = { method}
405+ awesome-category = { method} ,
406+ awesome-tags = { likelihood-based; simulation-based}
386407}
387408
388409@article {schumacher2023neural ,
@@ -396,7 +417,8 @@ @article{schumacher2023neural
396417 issn = { 2045-2322} ,
397418 doi = { 10.1038/s41598-023-40278-3} ,
398419 awesome-category = { application} ,
399- langid = { english}
420+ langid = { english} ,
421+ awesome-tags = { simulation-based; dynamic modeling; parameter estimation}
400422}
401423
402424@inproceedings {sharrock2024sequential ,
@@ -409,7 +431,8 @@ @inproceedings{sharrock2024sequential
409431 volume = { 235} ,
410432 pages = { 44565--44602} ,
411433 publisher = { PMLR} ,
412- awesome-category = { method}
434+ awesome-category = { method} ,
435+ awesome-tags = { simulation-based}
413436}
414437
415438@article {shiono2021estimation ,
@@ -422,7 +445,8 @@ @article{shiono2021estimation
422445 issn = { 01651889} ,
423446 doi = { 10.1016/j.jedc.2021.104082} ,
424447 awesome-category = { application} ,
425- langid = { english}
448+ langid = { english} ,
449+ awesome-tags = { agent modeling; simulation-based}
426450}
427451
428452@article {siahkoohi2023reliable ,
@@ -436,7 +460,8 @@ @article{siahkoohi2023reliable
436460 issn = { 0016-8033, 1942-2156} ,
437461 doi = { 10.1190/geo2022-0472.1} ,
438462 awesome-category = { application} ,
439- langid = { english}
463+ langid = { english} ,
464+ awesome-tags = { physics; correction; misspecification}
440465}
441466
442467@misc {starostin2024fast ,
@@ -448,7 +473,8 @@ @misc{starostin2024fast
448473 primaryclass = { cond-mat, physics:physics, stat} ,
449474 publisher = { arXiv} ,
450475 archiveprefix = { arXiv} ,
451- awesome-category = { method}
476+ awesome-category = { method} ,
477+ awesome-tags = { physics; meta learning}
452478}
453479
454480@article {tejero-cantero2020sbi ,
@@ -476,7 +502,8 @@ @inproceedings{tsilifis2022inverse
476502 doi = { 10.2514/6.2022-0631} ,
477503 awesome-category = { application} ,
478504 isbn = { 978-1-62410-631-6} ,
479- langid = { english}
505+ langid = { english} ,
506+ awesome-tags = { engineering; aerospace; simulation-based}
480507}
481508
482509@article {vonkrause2022mental ,
@@ -490,15 +517,17 @@ @article{vonkrause2022mental
490517 issn = { 2397-3374} ,
491518 doi = { 10.1038/s41562-021-01282-7} ,
492519 awesome-category = { application} ,
493- langid = { english}
520+ langid = { english} ,
521+ awesome-tags = { cognitive modeling; parameter estimation}
494522}
495523
496524@inproceedings {ward2022robust ,
497525 title = { Robust Neural Posterior Estimation and Statistical Model Criticism} ,
498526 booktitle = { Proceedings of the 36th International Conference on Neural Information Processing Systems} ,
499527 author = { Ward, Daniel and Cannon, Patrick and Beaumont, Mark and Fasiolo, Matteo and Schmon, Sebastian M.} ,
500528 year = { 2022} ,
501- awesome-category = { method}
529+ awesome-category = { method} ,
530+ awesome-tags = { model evaluation; simulation-based}
502531}
503532
504533@article {wang2024missing ,
@@ -515,15 +544,17 @@ @article{wang2024missing
515544 awesome-category = { method} ,
516545 awesome-tldr = { Encoding missing data in a time series by augmenting the data vector with binary indicators for presence or absence yields the most robust performance.} ,
517546 awesome-link-paper = { https://doi.org/10.1371/journal.pcbi.1012184} ,
518- awesome-link-code = { https://github.com/emune-dev/Data-missingness-paper}
547+ awesome-link-code = { https://github.com/emune-dev/Data-missingness-paper} ,
548+ awesome-tags = { missing data; simulation-based; parameter estimation}
519549}
520550
521551@inproceedings {wehenkel2024simulationbased ,
522552 title = { Simulation-Based Inference for Cardiovascular Models} ,
523553 booktitle = { {{NeurIPS}} Workshop} ,
524554 author = { Wehenkel, Antoine and Behrmann, Jens and Miller, Andrew C. and Sapiro, Guillermo and Sener, Ozan and Cameto, Marco Cuturi and Jacobsen, J{\"o}rn-Henrik} ,
525555 year = { 2024} ,
526- awesome-category = { application}
556+ awesome-category = { application} ,
557+ awesome-tags = { medicine; simulation-based; parameter estimation}
527558}
528559
529560@inproceedings {wildberger2023flow ,
@@ -534,7 +565,8 @@ @inproceedings{wildberger2023flow
534565 year = { 2023} ,
535566 volume = { 36} ,
536567 pages = { 16837--16864} ,
537- awesome-category = { method}
568+ awesome-category = { method} ,
569+ awesome-tags = { simulation-based}
538570}
539571
540572@article {zeng2023probabilistic ,
@@ -548,13 +580,15 @@ @article{zeng2023probabilistic
548580 issn = { 2190-5452, 2190-5479} ,
549581 doi = { 10.1007/s13349-022-00638-5} ,
550582 awesome-category = { application} ,
551- langid = { english}
583+ langid = { english} ,
584+ awesome-tags = { structural health monitoring}
552585}
553586
554587@inproceedings {zhou2024evaluating ,
555588 title = { Evaluating {{Sparse Galaxy Simulations}} via {{Out-of-Distribution Detection}} and {{Amortized Bayesian Model Comparison}}} ,
556589 booktitle = { 38th {{Conference}} on {{Neural Information Processing Systems}}} ,
557590 author = { Zhou, Lingyi and Radev, Stefan T. and Oliver, William H. and Obreja, Aura and Jin, Zehao and Buck, Tobias} ,
558591 year = { 2024} ,
559- awesome-category = { application}
592+ awesome-category = { application} ,
593+ awesome-tags = { physics; model evaluation; model comparison}
560594}
0 commit comments