Skip to content

Commit ac367d1

Browse files
Update README.md [GH Action]
1 parent 0b5b0a3 commit ac367d1

File tree

1 file changed

+32
-0
lines changed

1 file changed

+32
-0
lines changed

README.md

Lines changed: 32 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -155,6 +155,19 @@ We highly recommend checking out these lists for more resources on modern simula
155155
</pre></details>
156156
## Methodological Papers
157157

158+
- **An amortized approach to non-linear mixed-effects modeling based on neural posterior estimation** (2024)<br />_TLDR: Neural posterior estimation for hierarchical models, where the NPE is used in a first stage on a local level and then repeatedly used for global inference leveraging amortization._<br />by Jonas Arruda, Yannik Schälte, Clemens Peiter, Olga Teplytska, Ulrich Jaehde, Jan Hasenauer<br />[[Paper]](https://openreview.net/forum?id=uCdcXRuHnC) [[Code]](https://github.com/arrjon/Amortized-NLME-Models/tree/ICML2024)
159+
<details>
160+
<summary>Show BibTeX</summary>
161+
<pre><code>
162+
@inproceedings{arruda2024anamortized,
163+
title = {An amortized approach to non-linear mixed-effects modeling based on neural posterior estimation},
164+
booktitle = {Forty-first International Conference on Machine Learning},
165+
year = {2024},
166+
author = {Arruda and Schälte and Peiter and Teplytska and Jaehde and Hasenauer}
167+
}
168+
</code>
169+
</pre></details>
170+
158171
- **A Deep Learning Method for Comparing Bayesian Hierarchical Models.** (2024)<br />_Reading this paper? Please consider contributing a TLDR summary._<br />by Lasse Elsemüller, Martin Schnuerch, Paul-Christian Bürkner, Stefan T. Radev
159172
<details>
160173
<summary>Show BibTeX</summary>
@@ -315,6 +328,25 @@ We highly recommend checking out these lists for more resources on modern simula
315328
</code>
316329
</pre></details>
317330

331+
- **Missing data in amortized simulation-based neural posterior estimation** (2024)<br />_TLDR: Encoding missing data in a time series by augmenting the data vector with binary indicators for presence or absence yields the most robust performance._<br />by Zijian Wang, Jan Hasenauer, Yannik Schälte<br />[[Paper]](https://doi.org/10.1371/journal.pcbi.1012184) [[Code]](https://github.com/emune-dev/Data-missingness-paper)
332+
<details>
333+
<summary>Show BibTeX</summary>
334+
<pre><code>
335+
@article{wang2024missing,
336+
doi = {10.1371/journal.pcbi.1012184},
337+
journal = {PLOS Computational Biology},
338+
publisher = {Public Library of Science},
339+
title = {Missing data in amortized simulation-based neural posterior estimation},
340+
year = {2024},
341+
month = {06},
342+
volume = {20},
343+
pages = {1-17},
344+
number = {6},
345+
author = {Wang and Hasenauer and Schälte}
346+
}
347+
</code>
348+
</pre></details>
349+
318350
- **Conditional Generative Models Are Provably Robust: Pointwise Guarantees for Bayesian Inverse Problems** (2023)<br />_Reading this paper? Please consider contributing a TLDR summary._<br />by Fabian Altekrüger, Paul Hagemann, Gabriele Steidl
319351
<details>
320352
<summary>Show BibTeX</summary>

0 commit comments

Comments
 (0)