You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+32Lines changed: 32 additions & 0 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -155,6 +155,19 @@ We highly recommend checking out these lists for more resources on modern simula
155
155
</pre></details>
156
156
## Methodological Papers
157
157
158
+
-**An amortized approach to non-linear mixed-effects modeling based on neural posterior estimation** (2024)<br />_TLDR: Neural posterior estimation for hierarchical models, where the NPE is used in a first stage on a local level and then repeatedly used for global inference leveraging amortization._<br />by Jonas Arruda, Yannik Schälte, Clemens Peiter, Olga Teplytska, Ulrich Jaehde, Jan Hasenauer<br />[[Paper]](https://openreview.net/forum?id=uCdcXRuHnC)[[Code]](https://github.com/arrjon/Amortized-NLME-Models/tree/ICML2024)
159
+
<details>
160
+
<summary>Show BibTeX</summary>
161
+
<pre><code>
162
+
@inproceedings{arruda2024anamortized,
163
+
title = {An amortized approach to non-linear mixed-effects modeling based on neural posterior estimation},
164
+
booktitle = {Forty-first International Conference on Machine Learning},
165
+
year = {2024},
166
+
author = {Arruda and Schälte and Peiter and Teplytska and Jaehde and Hasenauer}
167
+
}
168
+
</code>
169
+
</pre></details>
170
+
158
171
-**A Deep Learning Method for Comparing Bayesian Hierarchical Models.** (2024)<br />_Reading this paper? Please consider contributing a TLDR summary._<br />by Lasse Elsemüller, Martin Schnuerch, Paul-Christian Bürkner, Stefan T. Radev
159
172
<details>
160
173
<summary>Show BibTeX</summary>
@@ -315,6 +328,25 @@ We highly recommend checking out these lists for more resources on modern simula
315
328
</code>
316
329
</pre></details>
317
330
331
+
-**Missing data in amortized simulation-based neural posterior estimation** (2024)<br />_TLDR: Encoding missing data in a time series by augmenting the data vector with binary indicators for presence or absence yields the most robust performance._<br />by Zijian Wang, Jan Hasenauer, Yannik Schälte<br />[[Paper]](https://doi.org/10.1371/journal.pcbi.1012184)[[Code]](https://github.com/emune-dev/Data-missingness-paper)
332
+
<details>
333
+
<summary>Show BibTeX</summary>
334
+
<pre><code>
335
+
@article{wang2024missing,
336
+
doi = {10.1371/journal.pcbi.1012184},
337
+
journal = {PLOS Computational Biology},
338
+
publisher = {Public Library of Science},
339
+
title = {Missing data in amortized simulation-based neural posterior estimation},
340
+
year = {2024},
341
+
month = {06},
342
+
volume = {20},
343
+
pages = {1-17},
344
+
number = {6},
345
+
author = {Wang and Hasenauer and Schälte}
346
+
}
347
+
</code>
348
+
</pre></details>
349
+
318
350
-**Conditional Generative Models Are Provably Robust: Pointwise Guarantees for Bayesian Inverse Problems** (2023)<br />_Reading this paper? Please consider contributing a TLDR summary._<br />by Fabian Altekrüger, Paul Hagemann, Gabriele Steidl
0 commit comments