|
8 | 8 | import org.bouncycastle.crypto.params.DHParameters;
|
9 | 9 | import org.bouncycastle.util.BigIntegers;
|
10 | 10 |
|
11 |
| -public class CramerShoupParametersGenerator { |
12 |
| - |
13 |
| - private int size; |
14 |
| - private int certainty; |
15 |
| - private SecureRandom random; |
16 |
| - |
17 |
| - /** |
18 |
| - * Initialise the parameters generator. |
19 |
| - * |
20 |
| - * @param size |
21 |
| - * bit length for the prime p |
22 |
| - * @param certainty |
23 |
| - * a measure of the uncertainty that the caller is willing to tolerate: |
24 |
| - * the probability that the generated modulus is prime exceeds (1 - 1/2^certainty). |
25 |
| - * The execution time of this method is proportional to the value of this parameter. |
26 |
| - * @param random |
27 |
| - * a source of randomness |
28 |
| - */ |
29 |
| - public void init(int size, int certainty, SecureRandom random) { |
30 |
| - this.size = size; |
31 |
| - this.certainty = certainty; |
32 |
| - this.random = random; |
33 |
| - } |
34 |
| - |
35 |
| - /** |
36 |
| - * which generates the p and g values from the given parameters, returning |
37 |
| - * the CramerShoupParameters object. |
38 |
| - * <p> |
39 |
| - * Note: can take a while... |
40 |
| - */ |
41 |
| - public CramerShoupParameters generateParameters() { |
42 |
| - // |
43 |
| - // find a safe prime p where p = 2*q + 1, where p and q are prime. |
44 |
| - // |
45 |
| - BigInteger[] safePrimes = ParametersHelper.generateSafePrimes(size, certainty, random); |
| 11 | +public class CramerShoupParametersGenerator |
| 12 | +{ |
| 13 | + private static final BigInteger ONE = BigInteger.valueOf(1); |
| 14 | + |
| 15 | + private int size; |
| 16 | + private int certainty; |
| 17 | + private SecureRandom random; |
| 18 | + |
| 19 | + /** |
| 20 | + * Initialise the parameters generator. |
| 21 | + * |
| 22 | + * @param size bit length for the prime p |
| 23 | + * @param certainty a measure of the uncertainty that the caller is willing to tolerate: |
| 24 | + * the probability that the generated modulus is prime exceeds (1 - 1/2^certainty). |
| 25 | + * The execution time of this method is proportional to the value of this parameter. |
| 26 | + * @param random a source of randomness |
| 27 | + */ |
| 28 | + public void init(int size, int certainty, SecureRandom random) |
| 29 | + { |
| 30 | + this.size = size; |
| 31 | + this.certainty = certainty; |
| 32 | + this.random = random; |
| 33 | + } |
| 34 | + |
| 35 | + /** |
| 36 | + * which generates the p and g values from the given parameters, returning |
| 37 | + * the CramerShoupParameters object. |
| 38 | + * <p/> |
| 39 | + * Note: can take a while... |
| 40 | + */ |
| 41 | + public CramerShoupParameters generateParameters() |
| 42 | + { |
| 43 | + // |
| 44 | + // find a safe prime p where p = 2*q + 1, where p and q are prime. |
| 45 | + // |
| 46 | + BigInteger[] safePrimes = ParametersHelper.generateSafePrimes(size, certainty, random); |
46 | 47 |
|
47 | 48 | // BigInteger p = safePrimes[0];
|
48 |
| - BigInteger q = safePrimes[1]; |
49 |
| - BigInteger g1 = ParametersHelper.selectGenerator(q, random); |
50 |
| - BigInteger g2 = ParametersHelper.selectGenerator(q, random); |
51 |
| - while(g1.equals(g2)){ |
52 |
| - g2 = ParametersHelper.selectGenerator(q, random); |
53 |
| - } |
54 |
| - |
55 |
| - return new CramerShoupParameters(q, g1, g2, new SHA256Digest()); |
56 |
| - } |
57 |
| - |
58 |
| - public CramerShoupParameters generateParameters(DHParameters dhParams){ |
59 |
| - BigInteger p = dhParams.getP(); |
60 |
| - BigInteger g1 = dhParams.getG(); |
61 |
| - |
62 |
| - // now we just need a second generator |
63 |
| - BigInteger g2 = ParametersHelper.selectGenerator(p, random); |
64 |
| - while(g1.equals(g2)){ |
65 |
| - g2 = ParametersHelper.selectGenerator(p, random); |
66 |
| - } |
67 |
| - |
68 |
| - return new CramerShoupParameters(p, g1, g2, new SHA256Digest()); |
69 |
| - } |
70 |
| - |
71 |
| - private static class ParametersHelper { |
72 |
| - |
73 |
| - private static final BigInteger TWO = BigInteger.valueOf(2); |
74 |
| - |
75 |
| - /* |
76 |
| - * Finds a pair of prime BigInteger's {p, q: p = 2q + 1} |
77 |
| - * |
78 |
| - * (see: Handbook of Applied Cryptography 4.86) |
79 |
| - */ |
80 |
| - static BigInteger[] generateSafePrimes(int size, int certainty, SecureRandom random) { |
81 |
| - BigInteger p, q; |
82 |
| - int qLength = size - 1; |
83 |
| - |
84 |
| - for (;;) { |
85 |
| - q = new BigInteger(qLength, 2, random); |
86 |
| - p = q.shiftLeft(1).add(BigInteger.ONE); |
87 |
| - if (p.isProbablePrime(certainty) && (certainty <= 2 || q.isProbablePrime(certainty))) { |
88 |
| - break; |
89 |
| - } |
90 |
| - } |
91 |
| - |
92 |
| - return new BigInteger[] { p, q }; |
93 |
| - } |
94 |
| - |
95 |
| - static BigInteger selectGenerator(BigInteger p, SecureRandom random) { |
96 |
| - BigInteger pMinusTwo = p.subtract(TWO); |
97 |
| - BigInteger g; |
| 49 | + BigInteger q = safePrimes[1]; |
| 50 | + BigInteger g1 = ParametersHelper.selectGenerator(q, random); |
| 51 | + BigInteger g2 = ParametersHelper.selectGenerator(q, random); |
| 52 | + while (g1.equals(g2)) |
| 53 | + { |
| 54 | + g2 = ParametersHelper.selectGenerator(q, random); |
| 55 | + } |
| 56 | + |
| 57 | + return new CramerShoupParameters(q, g1, g2, new SHA256Digest()); |
| 58 | + } |
| 59 | + |
| 60 | + public CramerShoupParameters generateParameters(DHParameters dhParams) |
| 61 | + { |
| 62 | + BigInteger p = dhParams.getP(); |
| 63 | + BigInteger g1 = dhParams.getG(); |
| 64 | + |
| 65 | + // now we just need a second generator |
| 66 | + BigInteger g2 = ParametersHelper.selectGenerator(p, random); |
| 67 | + while (g1.equals(g2)) |
| 68 | + { |
| 69 | + g2 = ParametersHelper.selectGenerator(p, random); |
| 70 | + } |
| 71 | + |
| 72 | + return new CramerShoupParameters(p, g1, g2, new SHA256Digest()); |
| 73 | + } |
| 74 | + |
| 75 | + private static class ParametersHelper |
| 76 | + { |
| 77 | + |
| 78 | + private static final BigInteger TWO = BigInteger.valueOf(2); |
| 79 | + |
| 80 | + /* |
| 81 | + * Finds a pair of prime BigInteger's {p, q: p = 2q + 1} |
| 82 | + * |
| 83 | + * (see: Handbook of Applied Cryptography 4.86) |
| 84 | + */ |
| 85 | + static BigInteger[] generateSafePrimes(int size, int certainty, SecureRandom random) |
| 86 | + { |
| 87 | + BigInteger p, q; |
| 88 | + int qLength = size - 1; |
| 89 | + |
| 90 | + for (; ; ) |
| 91 | + { |
| 92 | + q = new BigInteger(qLength, 2, random); |
| 93 | + p = q.shiftLeft(1).add(ONE); |
| 94 | + if (p.isProbablePrime(certainty) && (certainty <= 2 || q.isProbablePrime(certainty))) |
| 95 | + { |
| 96 | + break; |
| 97 | + } |
| 98 | + } |
| 99 | + |
| 100 | + return new BigInteger[]{p, q}; |
| 101 | + } |
| 102 | + |
| 103 | + static BigInteger selectGenerator(BigInteger p, SecureRandom random) |
| 104 | + { |
| 105 | + BigInteger pMinusTwo = p.subtract(TWO); |
| 106 | + BigInteger g; |
98 | 107 |
|
99 | 108 | /*
|
100 |
| - * RFC 2631 2.2.1.2 (and see: Handbook of Applied Cryptography 4.81) |
| 109 | + * RFC 2631 2.2.1.2 (and see: Handbook of Applied Cryptography 4.81) |
101 | 110 | */
|
102 |
| - do { |
103 |
| - BigInteger h = BigIntegers.createRandomInRange(TWO, pMinusTwo, random); |
| 111 | + do |
| 112 | + { |
| 113 | + BigInteger h = BigIntegers.createRandomInRange(TWO, pMinusTwo, random); |
104 | 114 |
|
105 |
| - g = h.modPow(TWO, p); |
106 |
| - } while (g.equals(BigInteger.ONE)); |
| 115 | + g = h.modPow(TWO, p); |
| 116 | + } |
| 117 | + while (g.equals(ONE)); |
107 | 118 |
|
108 |
| - return g; |
109 |
| - } |
110 |
| - } |
| 119 | + return g; |
| 120 | + } |
| 121 | + } |
111 | 122 |
|
112 | 123 | }
|
0 commit comments