-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy pathtest_spline.py
60 lines (45 loc) · 1.83 KB
/
test_spline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import numpy.testing as nt
import numpy as np
import matplotlib.pyplot as plt
import unittest
from spatialmath import FitCubicBSplineSE3, CubicBSplineSE3, SE3, SO3
class TestBSplineSE3(unittest.TestCase):
control_poses = [
SE3.Trans([e, 2 * np.cos(e / 2 * np.pi), 2 * np.sin(e / 2 * np.pi)])
* SE3.Ry(e / 8 * np.pi)
for e in range(0, 8)
]
@classmethod
def tearDownClass(cls):
plt.close("all")
def test_constructor(self):
CubicBSplineSE3(self.control_poses)
def test_evaluation(self):
spline = CubicBSplineSE3(self.control_poses)
nt.assert_almost_equal(spline(0).A, self.control_poses[0].A)
nt.assert_almost_equal(spline(1).A, self.control_poses[-1].A)
def test_visualize(self):
spline = CubicBSplineSE3(self.control_poses)
spline.visualize(num_samples=100, repeat=False)
class TestFitBSplineSE3(unittest.TestCase):
num_data_points = 16
num_samples = 100
num_control_points = 6
timestamps = np.linspace(0, 1, num_data_points)
trajectory = [
SE3.Rt(t = [t*4, 4*np.sin(t * 2*np.pi* 0.5), 4*np.cos(t * 2*np.pi * 0.5)],
R= SO3.Rx( t*2*np.pi* 0.5))
for t in timestamps
]
@classmethod
def tearDownClass(cls):
plt.close("all")
def test_constructor(self):
pass
def test_evaluation_and_visualization(self):
fit_se3_spline = FitCubicBSplineSE3(self.trajectory, self.timestamps, num_control_points=self.num_control_points)
result = fit_se3_spline.fit(disp=True)
assert len(result) == 2
assert fit_se3_spline.objective_function_xyz() < 0.01
assert fit_se3_spline.objective_function_so3() < 0.01
fit_se3_spline.visualize(num_samples=self.num_samples, repeat=False, length=0.4, kwargs_tranimate={"wait": True, "interval" : 10})