forked from HankLiTW/SCR-Program
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFear Display.py
386 lines (345 loc) · 16.6 KB
/
Fear Display.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import tkinter as tk
import tkinter.messagebox
from tkinter import filedialog, ttk, Scale
import matplotlib.pyplot as plt
import pandas as pd
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from scipy.signal import find_peaks
from parameter import Parameters
class FearDisplayApp:
def __init__(self):
self.max_us = 0
self.CSP_df = None
self.CSP_res_figure = None
self.CSP_response = 0
self.CSM_df = None
self.CSM_res_figure = None
self.CSM_response = 0
self.df = None
self.file_path = ""
self.min_y_ax1_ax2 = 2.0
self.max_y_ax1_ax2 = 8.0
self.min_y_ax3 = -1.0
self.max_y_ax3 = 1.0
self.TIME_STEP = 0.1
self.parameter = Parameters()
self.init_ui()
def init_ui(self):
self.window = tk.Tk()
self.window.title('Fear Display')
self.window.geometry('800x600')
self.window.configure(background='white')
self.top_frame = tk.Frame(self.window, bg='white')
self.top_frame.pack(fill=tk.BOTH)
self.data_btn = tk.Button(self.top_frame, text='Import Data (*.txt)', command=self.open_file)
self.data_btn.pack(fill=tk.BOTH, expand=True)
self.param_btn = tk.Button(self.top_frame, text='Parameter Adjustment', command=self.adjust_parameters)
self.param_btn.pack(fill=tk.BOTH, expand=True)
self.max_analysis_var = tk.IntVar()
self.max_analysis_checkbox = ttk.Checkbutton(self.top_frame, text="Standardize", variable=self.max_analysis_var,
command=self.update_analysis)
self.max_analysis_checkbox.pack(side=tk.LEFT)
self.label_frame = tk.Frame(self.window, bg='white')
self.label_frame.pack(fill=tk.BOTH, expand=True)
self.csp_label = tk.Label(self.label_frame, text="CS+ Response:", font=("Times New Roman", 10), bg='white')
self.csp_label.grid(row=1, column=1, padx=30, pady=10)
self.csm_label = tk.Label(self.label_frame, text="CS- Response:", font=("Times New Roman", 10), bg='white')
self.csm_label.grid(row=1, column=2, padx=30, pady=10)
self.mus_label = tk.Label(self.label_frame, text="Max US:", font=("Times New Roman", 10), bg='white')
self.mus_label.grid(row=1, column=3, padx=30, pady=10)
self.diff_label = tk.Label(self.label_frame, text="Difference:", font=("Times New Roman", 10), bg='white')
self.diff_label.grid(row=1, column=4, padx=30, pady=10)
self.reward_label = tk.Label(self.label_frame, text="Reward: ", font=("Times New Roman", 10), bg='white')
self.reward_label.grid(row=1, column=5, padx=30, pady=10)
self.middle_frame = tk.Frame(self.window, bg='white')
self.middle_frame.pack(fill=tk.BOTH, expand=True)
self.scale_frame = tk.Frame(self.window)
self.scale_frame.pack(side=tk.BOTTOM, fill=tk.BOTH)
self.y_scale_value_ax1 = tk.DoubleVar(value=0)
self.y_scale_ax1 = Scale(self.scale_frame, from_=0, to=5, resolution=0.01, orient="horizontal",
variable=self.y_scale_value_ax1, command=self.update_plot, length=350)
self.y_scale_ax1.pack(side=tk.LEFT, padx=10)
self.y_scale_value_ax3 = tk.DoubleVar(value=0)
self.y_scale_ax3 = Scale(self.scale_frame, from_=0, to=5, resolution=0.01, orient="horizontal",
variable=self.y_scale_value_ax3, command=self.update_plot, length=350)
self.y_scale_ax3.pack(side=tk.RIGHT, padx=10)
self.figure = plt.figure(figsize=(10, 6))
self.canvas = FigureCanvasTkAgg(self.figure, master=self.middle_frame)
self.canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True)
self.ax1 = self.figure.add_subplot(121)
self.ax3 = self.figure.add_subplot(122)
self.ax1.set_ylim(self.min_y_ax1_ax2, self.max_y_ax1_ax2)
self.ax3.set_ylim(self.min_y_ax3, self.max_y_ax3)
def run(self):
self.window.mainloop()
def open_file(self):
self.file_path = filedialog.askopenfilename(initialdir="/", title="Choose Data",
filetypes=(("txt files", "*.txt"), ("all files", "*.*")))
if self.file_path:
self.data_analysis(self.file_path, self.parameter.rise_begin, self.parameter.rise_end, self.parameter.display_window,
self.parameter.max_rise_time, self.parameter.target)
def SCR_resp(self,rise_begin, rise_end, max_rise_time, situation, target, display_window, time_step=0.1):
"""
:param rise_begin: the minimum response onset time
:param rise_end: the maximum response onset time
:param max_rise_time: the maximum time of the rising portion
:param situation: CS+, CS-, CS+E
:param target: which CS to be analyzed (reversed count)
:param display_window: window (sec)
:param time_step: time step (sec)
:return:
"""
min_index = 0
max_index = 0
place_SCR = self.df.loc[self.df[2] == situation].iloc[-target][0] # event onset time
print(place_SCR)
# Estimate CS Response
SCR_start = self.df[(self.df[0] >= place_SCR + rise_begin) & (self.df[0] <= place_SCR + rise_end)]
SCR_df = self.df[(self.df[0] >= place_SCR) & (self.df[0] <= place_SCR + display_window)]
print("SCR_df",SCR_df)
trough_index = find_peaks(-SCR_start[1])[0]
print("trough_index",trough_index)
SCR_response = 0
# if no trough found in the space
if len(trough_index) == 0:
min_index = 0
max_index = 0
# if we ignore rise_begin
if rise_begin == 0:
min_index = SCR_start[1].idxmin()
if (min_index + int(max_rise_time / time_step)) <= SCR_df.iloc[-1].name:
SCR_peaks = SCR_df.loc[min_index:min_index + int(max_rise_time / time_step)]
else:
SCR_peaks = SCR_df.loc[min_index:]
peak_index = find_peaks(SCR_peaks[1])[0]
SCR_min = SCR_peaks[1].iloc[0]
# if no peak
if len(peak_index) == 0:
min_index = 0
max_index = 0
# if peak
else:
SCR_peakrow = SCR_peaks.iloc[peak_index[0]]
SCR_max = SCR_peakrow[1]
SCR_response_temp = SCR_max - SCR_min
if SCR_response_temp > SCR_response:
SCR_response = SCR_response_temp
max_index = SCR_peakrow.name
# if we find trough in the space
else:
for i in range(len(trough_index)):
SCR_peaks = SCR_df[trough_index[i] + int(rise_begin / time_step):trough_index[i] + int(
rise_begin / time_step) + int(
max_rise_time / time_step) + 1]
print("SCR_peaks",SCR_peaks)
peak_index = find_peaks(SCR_peaks[1])[0]
SCR_troughrow = SCR_peaks.iloc[0]
SCR_min = SCR_troughrow[1]
min_index_temp = SCR_troughrow.name
# if no peak
if len(peak_index) == 0:
min_index = 0
max_index = 0
# if peak
else:
SCR_peakrow = SCR_peaks.iloc[peak_index[0]]
SCR_max = SCR_peakrow[1]
SCR_response_temp = SCR_max - SCR_min
print("SCR_max:",SCR_max,"SCR_min:", SCR_min)
if SCR_response_temp > SCR_response:
SCR_response = SCR_response_temp
max_index = SCR_peakrow.name
min_index = min_index_temp
# draw the response
SCR_res_figure = SCR_df.loc[min_index:max_index]
trough_check = find_peaks(-SCR_res_figure[1])[0]
print(min_index)
print(max_index)
# if there is trough between the response
if len(trough_check) != 0:
SCR_response = 0
min_index = 0
max_index = 0
SCR_res_figure = SCR_df.loc[min_index:max_index]
if situation == 1:
self.CSM_df = SCR_df
self.CSM_res_figure = SCR_res_figure
self.CSM_response = round(SCR_response,4)
elif situation == 2 :
self.CSP_df = SCR_df
self.CSP_res_figure = SCR_res_figure
self.CSP_response = round(SCR_response,4)
return SCR_response
# Find Maximum US
def max_US_resp(self,rise_begin, rise_end, max_rise_time, display_window):
# set rise_end to capture US response
if rise_end <= 9.2:
rise_end = 9.2
US_len = len(self.df.loc[self.df[2] == 3])
max_us_list = [self.SCR_resp(rise_begin, rise_end, max_rise_time, 3, target, display_window) for target in
range(1, US_len + 1)]
self.max_us = round(max(max_us_list),4)
print(self.max_us)
# Update CS shown on the GUI
def update_GUI(self,CSP_response, CSM_response):
self.csp_label.config(text=f"CS+ Response:{CSP_response}")
self.csm_label.config(text=f"CS- Response:{CSM_response}")
diff = round(CSP_response - CSM_response, 4)
self.diff_label.config(text=f"Difference:{diff}")
reward = round(300 - 100 * diff)
self.reward_label.config(text=f"Reward:{reward}")
# Graph Update
def update_plot(self,CSP_df,CSP_res_figure,CSM_df,CSM_res_figure):
##draw graph
self.figure.clear()
# set the number of graph
ax1 = self.figure.add_subplot(121)
ax3 = self.figure.add_subplot(122)
# set the y-axis
ax1.set_ylim(self.min_y_ax1_ax2 - self.y_scale_value_ax1.get(),
self.max_y_ax1_ax2 + self.y_scale_value_ax1.get())
ax3.set_ylim(self.min_y_ax3 - self.y_scale_value_ax3.get(), self.max_y_ax3 + self.y_scale_value_ax3.get())
# plot the graph
ax1.plot(CSP_df[1], label="CS+")
ax1.plot(CSP_res_figure[1], "red")
ax1.plot(CSM_df[1], "green", label="CS-")
ax1.plot(CSM_res_figure[1], "red")
"""for i in range(len(infl)):
ax1.scatter(infl[i],CSP_df[1].iloc[infl[i]])
for i in range(len(infl2)):
ax1.scatter(infl2[i],CSM_df[1].iloc[infl2[i]])"""
# set title
ax1.set_title("CS+ & CS-")
ax1.legend()
ax3.plot((CSP_df[1] - CSM_df[1]))
ax3.set_title("Difference")
plt.tight_layout()
self.canvas.draw()
def CS_resp_update(self, CSP_response, CSM_response, CSP_df, CSM_df, CSP_res_figure, CSM_res_figure):
# update CS response shown on the GUI
self.update_GUI(CSP_response, CSM_response)
# graph SCR response
if len(CSP_res_figure) != 0:
CSP_initial = CSP_res_figure.iloc[0].name
CSP_res_figure.index = range(CSP_df.index.get_loc(CSP_initial) + 1,
CSP_df.index.get_loc(CSP_initial) + len(CSP_res_figure) + 1)
if len(CSM_res_figure) != 0:
CSM_initial = CSM_res_figure.iloc[0].name
CSM_res_figure.index = range(CSM_df.index.get_loc(CSM_initial) + 1,
CSM_df.index.get_loc(CSM_initial) + len(CSM_res_figure) + 1)
CSP_df.index = range(1, len(CSP_df) + 1)
CSM_df.index = range(1, len(CSM_df) + 1)
##Find y-axis
self.min_y_ax1_ax2 = min(min(CSP_df[1]), min(CSM_df[1])) - 0.5
self.max_y_ax1_ax2 = max(max(CSP_df[1]), max(CSM_df[1])) + 0.5
self.min_y_ax3 = min(CSP_df[1] - CSM_df[1]) - 0.5
self.max_y_ax3 = max(CSP_df[1] - CSM_df[1]) + 0.5
self.update_plot(CSP_df, CSP_res_figure, CSM_df, CSM_res_figure)
def update_analysis(self):
if self.max_analysis_var.get() == 1:
#standarize data
CSP_response = round((self.CSP_response / self.max_us), 4)
CSM_response = round((self.CSM_response / self.max_us), 4)
CSP_df = self.CSP_df / self.max_us
CSM_df = self.CSM_df / self.max_us
CSP_res_figure = self.CSP_res_figure / self.max_us
CSM_res_figure = self.CSM_res_figure / self.max_us
self.CS_resp_update(CSP_response, CSM_response, CSP_df, CSM_df, CSP_res_figure, CSM_res_figure)
else:
# before standardized
self.CS_resp_update(self.CSP_response, self.CSM_response, self.CSP_df, self.CSM_df, self.CSP_res_figure, self.CSM_res_figure)
# Data analysis
def data_analysis(self,file_path, rise_begin, rise_end, display_window, max_rise_time, target):
# load data
self.df = pd.read_csv(file_path, delimiter="\t", header=None)
# CS Response
##CS+
self.SCR_resp(rise_begin, rise_end, max_rise_time, 2, target, display_window)
##CS-
self.SCR_resp(rise_begin, rise_end, max_rise_time, 1, target, display_window)
# Standardization
###US
self.max_US_resp(rise_begin, rise_end, max_rise_time, display_window)
self.mus_label.config(text=f"Max US:{self.max_us:}")
###update and draw CSP and CSM
self.update_analysis()
# figure
##reset index
"""global infl
infl = find_inflection(CSP_df)
print(infl)
global infl2
infl2 = find_inflection(CSM_df)
print("CSP",infl2)"""
def adjust_parameters(self):
# ---------------------------- PARAMETER SETTINGS ------------------------------- #
RISE_BEGIN_DEFAULT = "0.5"
RISE_END_DEFAULT = "4.5"
DISPLAY_WINDOW_DEFAULT = "10"
MAX_RISE_TIME_DEFAULT = "5.0"
TARGET_DEFAULT = "1"
# ---------------------------- PARAMETER SETTINGS ------------------------------- #
param_window = tk.Toplevel(self.window)
param_window.title("Parameter Adjustment")
# Adjust window place
main_window_x = self.window.winfo_x()
main_window_y = self.window.winfo_y()
main_window_width = self.window.winfo_width()
param_window_x = main_window_x + main_window_width + 10
param_window_y = main_window_y
# Adjust the size of the window
param_window.geometry("300x250+{}+{}".format(param_window_x, param_window_y))
## Rise time begin and end
tk.Label(param_window, text="Rise Time Begin").pack()
rise_begin = tk.Entry(param_window)
rise_begin.insert(0, RISE_BEGIN_DEFAULT)
rise_begin.pack()
tk.Label(param_window, text="Rise Time End").pack()
rise_end = tk.Entry(param_window)
rise_end.insert(0, RISE_END_DEFAULT)
rise_end.pack()
## window
tk.Label(param_window, text="Window").pack()
display_window = tk.Entry(param_window)
display_window.insert(0, DISPLAY_WINDOW_DEFAULT)
display_window.pack()
## maximum rise time
tk.Label(param_window, text="Maximum Rise Time").pack()
max_rise_time = tk.Entry(param_window)
max_rise_time.insert(0, MAX_RISE_TIME_DEFAULT)
max_rise_time.pack()
##target
tk.Label(param_window, text="Target").pack()
target = tk.Entry(param_window)
target.insert(0, TARGET_DEFAULT)
target.pack()
confirm_btn = tk.Button(param_window, text="Apply", command=lambda : self.apply_parameters(rise_begin.get(), rise_end.get(), display_window.get(), max_rise_time.get(), target.get()))
confirm_btn.pack()
def apply_parameters(self,rise_begin, rise_end, display_window, max_rise_time, target):
"""
Apply the given parameters to the data analysis.
Args:
rise_begin (str): The beginning of the rise period.
rise_end (str): The end of the rise period.
display_window (str): The window size for displaying the data.
max_rise_time (str): The maximum rise time allowed.
target (str): The target value for analysis.
Returns:
None
"""
# validate input parameters
try:
rise_begin = float(rise_begin)
rise_end = float(rise_end)
display_window = float(display_window)
max_rise_time = float(max_rise_time)
target = int(target)
except ValueError:
tk.messagebox.showerror("Invalid Value", "Error, please type valid value.")
# check if target is valid
if (target <= 0) or (target >= len(self.df[self.df[2] == 2]) + 1):
tk.messagebox.showerror("Invalid Value", "Error, please type valid value.")
# Re-plot
self.data_analysis(self.file_path, rise_begin, rise_end, display_window, max_rise_time, target)
app = FearDisplayApp()
app.run()