-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinitial.v
1028 lines (804 loc) · 27.9 KB
/
initial.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Require Export CatSem.CAT.Misc.
Require Export CatSem.PROP_untyped.representations.
Require Import Coq.Program.Equality.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Transparent Obligations.
Unset Automatic Introduction.
(** ** Initial Representation Without Inequations
we show that the category of representations has an initial object.
However, no propositional arities here yet.
The set of terms we construct now will stay the same for the initiality
with inequations, but the relation on terms will change. It is in fact
defined using the initial morphisms from the case without inequations.
*)
(** in this file we define
- UTS, the (carrier of the) initial monad (set of terms)
- Var, a constructor of UTS
- rename, the functoriality
- inj, renaming with (v => Some v)
- shift, taking the substitution function and changing it in a capture
avoiding fashion
- subst, the substitution
correspondences to the general monad definitions
(UTS left, Monad right):
- Var = weta
- rename f = lift f
- inj = lift weta
- shift = opt_inj
- subst = kleisli
subst is defined in terms of rename. this is precisely the other way
round for monads.
after having established monadicity, we must show:
- rename = lift
- shift = opt_inj
*)
(** afterwards we prove that an initial object exists in the category of representations
associated to a signature [S]. this result is actually the same (via an adjunction)
as the one proved in ../STS (even for simply--typed syntax *)
(** only in the next file ./prop_arities.v will we talk about propositional arities.
we still need initiality for the empty set of prop. arities, since the order
on UTS induced by a set on inequations is defined in terms of this initial
morphism *)
Section initial_type.
Ltac fin := simpl in *; intros; autorewrite with fin; auto with fin.
Variable S : Signature.
Notation "V '" := (option V).
Notation "V ** l" := (pow l V) (at level 10).
Notation "f ^^ l" := (pow_map (l:=l) f) (at level 10).
Notation "^ f" := (lift (M:= option_monad) f) (at level 5).
Notation "[ T ]" := (list T) (at level 5).
Notation "a -:- b" := (CONSTR a b) (at level 60).
(** UTS will be the (carrier of the) initial monad, UTS_list represents the arguments of
a constructor *)
(** UTS_list is actually isomorphic to [prod_mod_carrier UTS], but
we wouldn't get such a nice induction scheme with a non-mutual
inductive type
*)
(** later we equip UTS with two different preorders:
- the diagonal, yielding the initial representation without any inequations
- the preorder induced by a set of inequations A (cf. file ./prop_arities.v) *)
Reserved Notation "a -::- b" (at level 65).
Inductive UTS (V : TYPE) : TYPE :=
| Var : V -> UTS V
| Build : forall (i : sig_index S),
UTS_list V (sig i) -> UTS V
with
UTS_list (V : TYPE) : [nat] -> Type :=
| TT : UTS_list V nil
| constr : forall b bs,
UTS (V ** b) -> UTS_list V bs -> UTS_list V (b::bs).
Notation "a -::- b" := (constr a b).
(** order on [UTS_list] induced by order on UTS *)
Section order_on_UTS_list.
Check PO_obj.
Check @PreOrder.
Variable M : forall V, relation (UTS V).
Inductive UTS_list_relation (V : TYPE) : forall n,
relation (UTS_list V n) :=
| ttt_rel : forall x y : UTS_list V nil, UTS_list_relation x y
| constr_rel : forall n l, forall x y : UTS (V ** n),
forall a b : UTS_list V l,
M x y -> UTS_list_relation a b ->
UTS_list_relation (x -::- a) (y -::- b).
Section preorders.
Hypothesis H : forall V, @PreOrder _ (@M V).
End preorders.
End order_on_UTS_list.
(** at first the diagonal preorder *)
Definition UTS_sm V := Delta (UTS V).
(** mutual induction and recursion schemes.
we won't make use of the latter *)
Scheme UTSind := Induction for UTS Sort Prop with
UTSlistind := Induction for UTS_list Sort Prop.
Scheme UTSrect := Induction for UTS Sort Type with
UTSlistrect := Induction for UTS_list Sort Type.
Lemma constr_eq : forall (V : TYPE) (b : nat)
(bs : [nat]) (x y : UTS (V**b) )
(v w : UTS_list V bs),
x = y -> v = w -> x -::- v = y -::- w.
Proof.
intros; subst; auto.
Qed.
Hint Rewrite constr_eq pow_map_eq pow_eq_id : fin.
Hint Resolve constr_eq f_equal pow_map_eq : fin.
Reserved Notation "x //- f" (at level 42, left associativity).
Reserved Notation "x //-- f" (at level 42, left associativity).
(** ** Renaming, Substitution, Fusion laws
We prepare the monadic structure on [UTS]. Substitution is
defined making use of the simpler renaming, and shifting (under binders)
*)
(** renaming is a mutually recursive function *)
Fixpoint rename (V W: TYPE ) (f : V ---> W) (v : UTS V):=
match v in UTS _ return UTS W with
| Var v => Var (f v)
| Build i l => Build (*i:=i*) (l //-- f)
end
with
list_rename V t (l : UTS_list V t) W (f : V ---> W) : UTS_list W t :=
match l in UTS_list _ t return UTS_list W t with
| TT => TT W
| constr b bs elem elems =>
elem //- f ^^ b -::- elems //-- f
end
where "x //- f" := (rename f x)
and "x //-- f" := (list_rename x f).
(*
Fixpoint rename (V W: TYPE ) (f : V ---> W) (v : UTS V):=
match v in UTS _ return UTS W with
| Var v => Var (f v)
| Build i l => Build (*i:=i*) (l //-- f)
end
with
list_rename V t (l : UTS_list V t) W (f : V ---> W) : UTS_list W t :=
match l in UTS_list _ t return UTS_list W t with
| TT => TT W
| constr b bs elem elems =>
constr (elem //- ( f ^^ (b)))
(elems //-- f)
end
where "x //- f" := (rename f x)
and "x //-- f" := (list_rename x f).
*)
Definition rename_sm V W (f : V ---> W) :
UTS_sm V ---> UTS_sm W := #Delta (rename f).
(** functoriality of renaming for UTS *)
Hint Extern 1 (_ = _) => apply f_equal.
Ltac elim_option := match goal with [H : option _ |- _] => destruct H end.
Ltac t := repeat (cat || apply constr_eq || rew_all
|| app_any || fin || elim_option).
Lemma rename_eq : forall (V : TYPE) (v : UTS V)
(W : TYPE) (f g : V ---> W),
(forall x, f x = g x) -> v //- f = v //- g.
Proof.
app (@UTSind
(fun (a : Type) (v : UTS a) =>
forall (b : Type)(f g : a ---> b),
(f == g) ->
rename (W:=b) f v = rename (W:=b) g v)
(fun V l (v : UTS_list V l) =>
forall (b : TYPE)(f g : V ---> b),
(f == g) ->
v //-- f = v //-- g)); t.
Qed.
Hint Resolve rename_eq constr_eq pow_id pow_comp : fin.
Hint Rewrite rename_eq constr_eq pow_id pow_comp : fin.
Obligation Tactic := unfold Proper ; red; fin.
Program Instance rename_oid V W :
Proper (A:=(V ---> W) -> (UTS V ---> UTS W))
(equiv ==> equiv) (@rename V W).
Hint Extern 1 (?f ^^ _ _ ?x = ?x) => apply pow_eq_id.
Lemma rename_eq_id V (x : UTS V) (f : V ---> V) :
f == id _ -> x //- f = x.
Proof.
apply (@UTSind
(fun a (x : UTS a) => forall f, f == id _ ->
x //- f = x)
(fun a t (l : UTS_list a t) => forall f, f == id _ ->
l //-- f = l)); t.
Qed.
Lemma rename_id V (x : UTS V) : x //- id _ = x .
Proof.
repeat (t || apply rename_eq_id).
Qed.
Ltac tt := repeat (t ||
match goal with [|- ?s //- _ = ?s //- _] =>
apply rename_eq end ||
elim_option || rew pow_comp).
Lemma rename_comp V (x : UTS V) W (f : V ---> W) X (g : W ---> X):
x //- f //- g = x //- (fun y => g (f y)).
Proof.
apply (@UTSind
(fun a (x : UTS a) =>
forall b (f : a ---> b) c (g : b ---> c),
x //- f //- g = x //- (fun y => g (f y)))
(fun a t (l : UTS_list a t) =>
forall b (f : a ---> b) c (g : b ---> c),
l //-- f //-- g = l //-- (f ;; g))); tt.
Qed.
Hint Rewrite rename_comp rename_id : fin.
Hint Resolve rename_comp rename_id : fin.
Obligation Tactic := fin.
Program Instance rename_func : Functor_struct (Fobj := @UTS) rename.
(** injection of a term into the type of terms with one more variable *)
Definition inj V := rename (@Some V).
Definition inj_list V :=
fun t (v : UTS_list V t) => list_rename v (@Some V).
(** the shifting, needed to avoid capture *)
(** we'll call it _ shift in order to avoid clash with generic shift *)
Definition _shift (V W : TYPE ) (f : V ---> UTS W) :
V ' ---> UTS (W ') :=
fun v =>
match v in (option _) return (UTS (W ')) with
| Some p => inj (f p)
| None => Var None
end.
Notation "x >- f" := (_shift f x) (at level 40).
Locate S.
(** same for lshift, being given a list of object language types *)
Fixpoint _lshift (l : nat) (V W : TYPE) (f : V ---> UTS W) :
V ** l ---> UTS (W ** l) :=
match l return V ** l ---> UTS (W**l) with
| 0 => f
| Datatypes.S n' => @_lshift n' _ _ (_shift f)
end.
(*Implicit Arguments shift_l [V W t].*)
Notation "x >>-- f" := (_lshift f x) (at level 40).
(*Notation "f $$ l" := (shift_list l f) (at level 20).*)
(** finally the substitution *)
Reserved Notation "x >== f" (at level 59, left associativity).
Reserved Notation "x >>== f" (at level 59, left associativity).
Fixpoint subst (V W : TYPE) (f : V ---> UTS W) (v : UTS V) :
UTS W := match v in UTS _ return UTS _ with
| Var v => f v
| Build i l => Build (l >>== f)
end
with
list_subst V W t (l : UTS_list V t) (f : V ---> UTS W) : UTS_list W t :=
match l in UTS_list _ t return UTS_list W t with
| TT => TT W
| (*constr b bs*) elem -::- elems =>
elem >== _lshift f -::- elems >>== f
end
where "x >== f" := (subst f x)
and "x >>== f" := (list_subst x f).
(*
Definition subst_sm (V W : TYPE) (f : Delta V ---> UTS_sm W) :
UTS_sm V ---> UTS_sm W := #Delta (subst f).
*)
(** substitution of one variable only *)
Definition substar (V : TYPE) (M : UTS V ) :
UTS (V ') ---> UTS V :=
subst (fun (x : V ') => match x with
| None => M
| Some v => Var v
end).
Notation "M [*:= N ]" := (substar N M) (at level 50).
(** FUSION LAWS *)
(** a boring section, don't read it *)
Hint Extern 1 (_ = _) => f_equal : fin.
Lemma _shift_eq V W (f g : V ---> UTS W)
(H : forall x, f x = g x) (x : V ') :
x >- f = x >- g.
Proof.
tt.
Qed.
Hint Resolve _shift_eq : fin.
Hint Rewrite _shift_eq : fin.
Obligation Tactic := repeat red; fin.
Program Instance shift_oid V W :
Proper (equiv ==> equiv) (@_shift V W).
Lemma _lshift_eq l (V W : TYPE) (f g : V ---> UTS W)
(H : forall x, f x = g x) (x : V ** l) :
x >>-- f = x >>-- g.
Proof.
induction l; fin.
Qed.
Hint Resolve _lshift_eq : fin.
Hint Rewrite _lshift_eq : fin.
Program Instance _lshift_oid l V W :
Proper (equiv ==> equiv) (@_lshift l V W).
Lemma shift_var (V : TYPE) (x : V ') : x >- @Var _ = Var x .
Proof.
tt.
Qed.
Hint Resolve shift_var : fin.
Hint Rewrite shift_var : fin.
Ltac ttinv := repeat (tt || rerew_all; fin).
Lemma shift_l_var l V (x : V ** l) : x >>-- @Var _ = Var x .
Proof.
induction l; ttinv.
Qed.
Hint Resolve shift_l_var : fin.
Lemma shift_l_var' l V : _lshift (l:=l) (Var (V:=V)) == Var (V:=_).
Proof.
tt.
Qed.
Lemma var_lift_shift V W (f : V ---> W) (x : V ') : Var (^f x) = x >- (f ;; @Var _ ).
Proof.
induction x; tt.
Qed.
Hint Resolve var_lift_shift shift_l_var' : fin.
Hint Rewrite var_lift_shift shift_l_var' : fin.
Ltac elim_lshift := match goal with
[|-?x >>-- _ = ?x >>-- _ ] => apply _lshift_eq end.
Ltac t4 := repeat (tt || elim_lshift).
Lemma var_lift_shift_l (l : nat) V W (f : V ---> W) x :
Var ((f ^^ l) x) = x >>-- (f ;; @Var _ ) .
Proof.
induction l; t4.
Qed.
Lemma shift_lift V W X (f : V ---> W) (g : W ---> UTS X) (x : V ') :
(^f x) >- g = x >- (f ;; g).
Proof.
induction x; fin.
Qed.
Hint Resolve shift_lift var_lift_shift_l : fin.
Hint Rewrite shift_lift : fin.
Lemma shift_lift_list l V W X (f : V ---> W) (g : W ---> UTS X) x:
(f ^^ l x) >>-- g = x >>-- (f ;; g).
Proof.
induction l; t4.
Qed.
Lemma subst_eq V (x : UTS V) W (f g : V ---> UTS W)
(H : forall x, f x = g x): x >== f = x >== g.
Proof.
app (@UTSind
(fun V x => forall W (f g : V ---> UTS W)
(H:f == g), x >== f = x >== g)
(fun V l (v : UTS_list V l) =>
forall W (f g : V ---> UTS W)(H:f == g),
v >>== f = v >>== g) );
fin.
Qed.
Lemma lsubst_eq V l (x : UTS_list V l)
W (f g : V ---> UTS W)
(H : forall x, f x = g x): x >>== f = x >>== g.
Proof.
app (@UTSlistind
(fun V x => forall W (f g : V ---> UTS W)
(H:f == g), x >== f = x >== g)
(fun V l (v : UTS_list V l) =>
forall W (f g : V ---> UTS W)(H:f == g),
v >>== f = v >>== g) );
fin.
Qed.
Hint Resolve subst_eq shift_l_var
var_lift_shift_l _lshift_eq lsubst_eq : fin.
Hint Rewrite subst_eq shift_l_var var_lift_shift_l : fin.
Obligation Tactic := unfold Proper; red; fin.
Program Instance subst_oid V W :
Proper (equiv ==> equiv (Setoid:=mor_oid (UTS V) (UTS W)))
(@subst V W).
Ltac elim_fun := match goal with
[|-?x >>-- _ = ?x >>-- _ ] => apply _lshift_eq
| [|- lshift _ ?x = lshift _ ?x ] => app lshift_eq
| [|-?x >== _ = ?x >== _ ] => apply subst_eq
| [|-constr _ _ = constr _ _ ] => apply constr_eq
| [|-?x //- _ = ?x //- _ ] => apply rename_eq
| [|-?x >- _ = ?x >- _ ] => apply _shift_eq
| [|-?x >>== _ = ?x >>== _ ] => apply lsubst_eq
| [|-CONSTR _ _ = CONSTR _ _ ] => apply CONSTR_eq
| [|- _ = _ ] => apply f_equal end.
Ltac t5 := repeat (elim_fun || tt || unfold inj, substar).
Lemma subst_var (V : TYPE) : forall (v : UTS V), v >== (@Var V) = v .
Proof.
apply (@UTSind
(fun V (v : UTS V) => v >== (Var (V:=V)) = v)
(fun V l (v : UTS_list V l) => v >>== (Var (V:=V)) = v));
repeat (t5 ||
match goal with [|- ?s >== _lshift _ = ?s ]=>
transitivity (s >== (Var (V:=_))) end ).
Qed.
Lemma subst_eq_rename V (v : UTS V) W (f : V ---> W) :
v //- f = v >== f ;; Var (V:=W).
Proof.
apply (@UTSind
(fun V (v : UTS V) => forall W (f : V ---> W),
v //- f = v >== (f;;Var (V:=W)))
(fun V l (v : UTS_list V l) => forall W (f : V ---> W),
v //-- f = v >>== (f ;; Var (V:=W))) );
t5.
Qed.
Lemma rename_shift V W X (f : V ---> UTS W) (g : W ---> X) (x : V ') :
x >- f //- ^g = x >- (f ;; rename g).
Proof.
induction x; t5.
Qed.
Hint Rewrite rename_shift shift_lift_list : fin.
Hint Resolve rename_shift shift_lift_list : fin.
Lemma rename_shift_list (l : nat) V (x : V ** l)
W X (f : V ---> UTS W)
(g : W ---> X) :
x >>-- f //- g ^^ l =
x >>-- (f ;; rename g).
Proof.
induction l; t5.
Qed.
Hint Resolve rename_shift_list : fin.
Hint Rewrite rename_shift_list : fin.
Lemma rename_subst V (v : UTS V) W X (f : V ---> UTS W)
(g : W ---> X) :
(v >== f) //- g = v >== (f ;; rename g).
Proof.
apply (@UTSind
(fun V (v : UTS V) => forall W X (f : V ---> UTS W)
(g : W ---> X),
(v >== f) //- g = v >== (f ;; rename g))
(fun V l (v : UTS_list V l) => forall W X
(f : V ---> UTS W) (g : W ---> X),
(v >>== f) //-- g = v >>== (f ;; rename g)));
t5.
Qed.
Lemma subst_rename V (v : UTS V) W X (f : V ---> W)
(g : W ---> UTS X) :
v //- f >== g = v >== (f ;; g).
Proof.
apply (@UTSind
(fun V (v : UTS V) => forall W X (f : V ---> W)
(g : W ---> UTS X),
v //- f >== g = v >== (f ;; g))
(fun V l (v : UTS_list V l) => forall W X
(f : V ---> W) (g : W ---> UTS X),
v //-- f >>== g = v >>== (f ;; g)));
t5.
Qed.
Hint Resolve subst_rename rename_subst : fin.
Hint Rewrite subst_rename rename_subst : fin.
Hint Unfold substar : fin.
Lemma rename_substar V (v : UTS V ') W (f : V ---> W) N:
v [*:= N] //- f = (v //- ^f) [*:= N //- f ].
Proof.
t5.
Qed.
Hint Rewrite rename_subst rename_subst : fin.
Lemma subst_shift_shift V (v : V ') W X (f: V ---> UTS W) (g: W ---> UTS X):
(v >- f) >== (_shift g) =
v >- (f ;; subst g).
Proof.
induction v; t5.
Qed.
Hint Resolve subst_shift_shift : fin.
Hint Rewrite subst_shift_shift : fin.
Lemma subst_shift_shift_list (l : nat) V (v : V ** l)
W X (f: V ---> UTS W) (g: W ---> UTS X):
v >>--f >== (_lshift g) =
v >>-- (f ;; subst g).
Proof.
induction l; t5.
Qed.
Hint Rewrite subst_shift_shift_list : fin.
Hint Resolve subst_shift_shift_list : fin.
Lemma subst_subst V (v : UTS V) W X (f : V ---> UTS W)
(g : W ---> UTS X) :
v >== f >== g = v >== f;; subst g.
Proof.
apply (@UTSind
(fun (V : Type) (v : UTS V) => forall (W X : Type)
(f : V ---> UTS W) (g : W ---> UTS X),
v >== f >== g = v >== (f;; subst g))
(fun (V : Type) l (v : UTS_list V l) =>
forall (W X : Type)
(f : V ---> UTS W) (g : W ---> UTS X),
v >>== f >>== g = v >>== (f;; subst g) ));
t5.
Qed.
Hint Resolve subst_var subst_subst : fin.
Hint Rewrite subst_subst : fin.
Ltac tinv := t5; repeat (rerew_all || elim_fun); t5.
Lemma lift_rename V (s : UTS V) W (f : V ---> W) :
s >== (f ;; @Var _) = s //- f.
Proof.
app (@UTSind
(fun V s => forall W f,
subst (f ;; Var (V:=W)) s =
rename f s)
(fun V l s => forall W f,
list_subst s (f ;; Var (V:=W)) =
list_rename s f));
tinv.
Qed.
(** END OF FUSION LAWS *)
(** ** Monad structure on [UTS] *)
(** UTS equipped with diagonal preorder is a relative monad over Delta *)
Obligation Tactic := unfold Proper, respectful; fin.
Program Instance UTS_sm_rmonad : RMonad_struct Delta UTS_sm := {
rweta c := #Delta (@Var c);
rkleisli a b f := #Delta (subst f)
}.
Canonical Structure UTSM := Build_RMonad UTS_sm_rmonad.
(** ** Bijections
as said before, UTS_list is actually the same as
prod_mod_c UTSM_sm. we give a module morphism translation *)
Fixpoint UTSl_f_pm l V (x : prod_mod_c (fun V => UTS V) V l)
: UTS_list V l :=
match x in prod_mod_c _ _ l return UTS_list V l with
| TTT => TT V
| (*CONSTR b bs*) e -:- el => e -::- UTSl_f_pm el
end.
Fixpoint pm_f_UTSl l V (v : UTS_list V l) :
prod_mod_c (fun V => UTS V) V l :=
match v in UTS_list _ l return prod_mod_c _ V l with
| TT => TTT _ _
| elem -::- elems =>
elem -:- pm_f_UTSl elems
end.
Lemma one_way l V (v : UTS_list V l) :
UTSl_f_pm (pm_f_UTSl v) = v.
Proof.
induction v; fin.
Qed.
Lemma or_another l V (v : prod_mod_c (fun V => UTS V) l V) :
pm_f_UTSl (UTSl_f_pm v) = v.
Proof.
induction v; fin.
Qed.
(** we now establish some more properties, which will help in the future
in particular the mentioned equalities:
- rename = lift
- _ shift = shift
*)
Lemma list_subst_eq V l (v : UTS_list V l) W (f g : V ---> UTS W) :
f == g -> v >>== f = v >>== g.
Proof.
apply (@UTSlistind
(fun V x => forall W (f g : V ---> UTS W)
(H:f == g), x >== f = x >== g)
(fun V l (v : UTS_list V l) =>
forall W (f g : V ---> UTS W)(H:f == g),
v >>== f = v >>== g) );
fin.
Qed.
(** ** Some more lemmas
we establish some equalities *)
Hint Rewrite subst_eq_rename : fin.
(** shift = opt_inj UTS *)
Notation "x >>- f" := (shift_not f x) (at level 50).
Notation "x >-- f" := (lshift _ f x) (at level 50).
Existing Instance UTS_sm_rmonad.
Lemma _shift_shift_eq V W (f : Delta V ---> UTS_sm W) (x : V ') :
x >>- f = x >- f.
Proof.
t5.
Qed.
Hint Resolve _shift_shift_eq : fin.
Lemma _lshift_lshift_eq (l : nat) V (x : V ** l) W (f : Delta V ---> UTS_sm W):
x >-- f = x >>-- f.
Proof.
induction l; t5.
Qed.
(** rename = lift *)
Lemma lift_rename2 V (s : UTS_sm V) W (f : V ---> W):
rlift UTSM f s = s //- f.
Proof.
fin.
Qed.
(** UTSl_f_pm ;; list_subst = mkleisli ;; UTSl_f_pm *)
Hint Resolve _lshift_lshift_eq : fin.
Notation "v >>>= f" := (pm_mkl f v) (at level 67).
Lemma sts_list_subst l X (v : prod_mod UTSM l X)
W (f : Delta X ---> UTS_sm W):
UTSl_f_pm (pm_mkl f v ) = (UTSl_f_pm v) >>== f.
Proof.
induction v; repeat (t5 || rew _lshift_lshift_eq ) .
Qed.
Hint Resolve sts_list_subst : fin.
Hint Rewrite sts_list_subst : fin.
Locate ">>==".
Check list_subst.
Check pm_mkl.
Check pm_f_UTSl.
Lemma sts_list_subst2 l X (v : UTS_list X l)
Y (f : Delta X ---> UTS_sm Y):
pm_f_UTSl (v >>== f) = pm_mkl (M:=UTSM) f (pm_f_UTSl v).
Proof.
induction v; t5.
rew _lshift_lshift_eq.
Qed.
(** ** Representation structure on [UTS]
we define the Representation Structure, i.e. for every arity
a module morphism *)
Obligation Tactic := t.
(** the diagonal propagates to products in the expected way *)
Lemma diag_preorder_prod_imp_eq (l : [nat]) V (x y : prod_mod_c UTS_sm V l)
(H : prod_mod_c_rel x y) : x = y.
Proof.
induction 1;
simpl in *.
dependent destruction x.
dependent destruction y.
constructor.
inversion IHprod_mod_c_rel.
inversion H.
constructor.
Qed.
(*
Lemma bbb (l : [nat]) V (x y : prod_mod_c UTS_sm V l) :
prod_mod_c_rel x y -> smallest_rel x y.
Proof.
intros;
rewrite (bba H);
constructor.
Qed.
*)
(*
Lemma bbba (l : [nat]) V (x y : prod_mod_c UTS_sm V l)
(f : prod_mod_c UTS_sm V l -> UTSM_sm V):
prod_mod_c_rel x y -> f x << f y.
Proof.
simpl; intros;
rewrite (bba H);
constructor.
Qed.
*)
Obligation Tactic := unfold Proper, respectful; intros; simpl;
repeat (match goal with [H:_|-_]=>rewrite (diag_preorder_prod_imp_eq H) end); constructor.
Program Instance UTS_arity_rep_po (i : sig_index S) V : PO_mor_struct
(a:= prod_mod UTSM (sig i) V)
(b:= UTSM V)
(fun (X : prod_mod_c _ V (sig i)) => Build (i:=i) (UTSl_f_pm (V:=V) X)).
Obligation Tactic := t5.
Program Instance UTS_arity_rep (i : sig_index S) :
RModule_Hom_struct
(M := prod_mod UTSM (sig i))
(N := UTSM)
(fun V => Build_PO_mor (UTS_arity_rep_po i V)).
(** UTS has a structure as a representation of S *)
Canonical Structure UTSrepr : Repr S UTSM :=
fun i => Build_RModule_Hom (UTS_arity_rep i).
Canonical Structure UTSRepr : REP S :=
Build_Representation (@UTSrepr).
(** ** INITIALITY
the representation [UTSRepr] we've just defined is initial: *)
Section initiality.
Variable R : REP S.
(** the initial morphism UTS -> R *)
Fixpoint init V (v : UTS V) : R V :=
match v in UTS _ return R V with
| Var v => rweta (RMonad_struct := R) V v
| Build i X => repr R i V (init_list X)
end
with
init_list l (V : TYPE) (s : UTS_list V l) : prod_mod R l V :=
match s in UTS_list _ l return prod_mod R l V with
| TT => TTT _ _
| elem -::- elems => init elem -:- init_list elems
end.
(** *** [init] commutes with renaming, substitution
now for init to be a morphism of monads we need to establish
commutativity with substitution
the following lead towards this goal
*)
(** init commutes with lift/rename *)
Ltac tt := t5; unfold rlift, rmlift;
repeat (t || rew (rlift_rweta R) || app (rkl_eq R)
|| rew (rkleta R) || rew (retakl R)
|| rew lshift_weta_f ).
Lemma init_lift V x W (f : V ---> W) :
init (x //- f) = rlift R f (init x).
Proof.
apply (@UTSind
(fun V (x : UTS V) => forall W (f : V ---> W),
init (x //- f) = rlift R f (init x))
(fun V l (s : UTS_list V l) => forall
W (f : V ---> W),
(init_list (s //-- f)) =
rmlift (prod_mod R l) f (init_list s))) ;
repeat (tt ||
match goal with [|- PO_fun (rmodule_hom ?H _) _ = _ ] =>
rew (rmod_hom_rmkl (H)) end).
Qed.
Definition init_sm V := Sm_ind (@init V).
(** init commutes with shift and lshift *)
Lemma init_shift V W (f : Delta V ---> UTS_sm W) (x : V ') :
init (x >>- f) = x >>- (f ;; @init_sm _ ).
Proof.
induction x;
repeat (t5 || rerew init_lift).
Qed.
Hint Rewrite init_shift : fin.
Ltac t6 := repeat (t5 || elim_option || apply lshift_eq || app init_lift).
Lemma init_lshift (l : nat) V W (f : Delta V ---> UTS_sm W) (x : V ** l) :
init (x >-- f) = x >-- (f ;; @init_sm _).
Proof.
induction l; t6; tt;
let H':= fresh in
(assert (H' := init_lift);
unfold rlift in H';
simpl in H';
rewrite <- H');
apply f_equal;
rew lift_rename.
Qed.
Hint Rewrite init_lshift : fin.
Hint Resolve init_lshift : fin.
(** init is a morphism of monads *)
Lemma init_kleisli V (v : UTS V) W (f : Delta V ---> UTS_sm W) :
init (v >== f) =
rkleisli (f ;; @init_sm _ ) (init v).
Proof.
apply (@UTSind
(fun X (v : UTS X) =>
forall Y (f : Delta X ---> UTS_sm Y),
init (v >== f) =
rkleisli (RMonad_struct := R)
(f ;; @init_sm _) (init v))
(fun X l (s : UTS_list X l) => forall Y (f : Delta X ---> UTS_sm Y),
init_list (s >>== f) =
rmkleisli (RModule_struct := prod_mod R l)
(f ;; @init_sm _ )
(init_list s)));
repeat (tt ||
match goal with [ i : sig_index _ |- _] =>
rew (rmod_hom_rmkl (repr R i)) end).
transitivity (init (u >== lshift_c f)).
apply f_equal.
apply subst_eq.
intro.
simpl in *.
assert (H3 := _lshift_lshift_eq x f).
simpl in *. auto.
assert (H4 := H _ (lshift _ f)).
simpl in H4.
rewrite H4.
apply (rkl_eq R).
simpl.
intros.
rerew init_lshift.
Qed.
Lemma init_kleisli2 V (v : UTS V) W (f : V ---> UTS W) :
init (v >== f) =
rkleisli (RMonad_struct := R) (Sm_ind f ;; @init_sm _ ) (init v).
Proof.
simpl; intros;
match goal with [f : _ , v : _ |-_] => rew (init_kleisli v (#Delta f)) end;
app (rkl_eq R).
Qed.
Hint Rewrite init_kleisli : fin.
Hint Resolve init_kleisli : fin.
Obligation Tactic := fin; rew init_kleisli.
(** ** [init] is the carrier of a monad morphism [UTSM_sm -> R] *)
Program Instance init_monadic : RMonad_Hom_struct (P:=UTSM) init_sm.
Canonical Structure init_mon := Build_RMonad_Hom init_monadic.
(** ** [init] is morpism of representations
init is not only (the carrier of) a monad morphism, but even (of) a morphism of
representations *)
(** prod_ind_mod_mor INIT = init_list (up to bijection) *)
Lemma prod_mor_eq_init_list (i : sig_index S) V
(x : prod_mod_c UTS_sm V (sig i)) :
Prod_mor_c init_mon x = init_list (UTSl_f_pm x).
Proof.
induction x; fin.
Qed.
Obligation Tactic := unfold commute; fin; try rew prod_mor_eq_init_list.
Program Instance init_representic : Representation_Hom_struct
(P:=UTSRepr) init_mon .
Definition init_rep := Build_Representation_Hom init_representic.
(** ** INITIALITY of UTSRepr with init *)
Section init.
Variable f : Representation_Hom UTSRepr R.
Hint Rewrite one_way : fin.
Ltac ttt := tt; try rew (rmon_hom_rweta f);
(try match goal with [ s : _ |-_] =>
rewrite <- (one_way s);
let H:=fresh in assert (H:=repr_hom_s _ _ _ f f );
unfold commute in H; simpl in H end);
repeat (rewrite one_way || apply f_equal || tinv || tt).
(*
tt; try app (mh_weta f);
match goal with [x : STS_list _ _ |- _ ] =>
try rerew (one_way x) end;
match goal with [t:T|-_] =>
try let H:=fresh in assert (H:=repr_hom f (t:=t));
unfold commute in H; simpl in H; rerew H end;
try elim_fun; t.
*)
Lemma init_unique_prepa V (v : UTS V) : f V v = init v.
Proof.
apply (@UTSind
(fun V v => f V v = init v)
(fun V l v => Prod_mor f l V (pm_f_UTSl v) = init_list v));
ttt;
match goal with [H:_|-_]=>rewrite <- (one_way H) end;
let H:=fresh in (assert (H:=@repr_hom_s _ _ _ f f);
unfold commute in H;
unfold commute_left, commute_right in H ;
simpl in *;
rewrite <- H);
rewrite one_way; apply f_equal;
auto.
Qed.