forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIndexKernel.cpp
161 lines (145 loc) · 5.39 KB
/
IndexKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#include <ATen/native/TensorAdvancedIndexing.h>
#include <cmath>
#include <iostream>
#include <ATen/Dispatch.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/Parallel.h>
#include <ATen/cpu/vec256/vec256.h>
namespace at { namespace native {
namespace {
using namespace vec256;
struct Indexer {
Indexer(int64_t num_indexers, char** indexers, const int64_t* indexer_strides,
IntArrayRef original_sizes, IntArrayRef original_strides)
: num_indexers(num_indexers)
, indexers(indexers)
, indexer_strides(indexer_strides)
, original_strides(original_strides.data())
, original_sizes(original_sizes.data()) {
AT_ASSERT(original_strides.size() == num_indexers);
AT_ASSERT(original_sizes.size() == num_indexers);
}
int64_t num_indexers;
char** indexers;
const int64_t* indexer_strides;
const int64_t* original_strides;
const int64_t* original_sizes;
int64_t get(int64_t idx) {
int64_t offset = 0;
for (int j = 0; j < num_indexers; j++) {
int64_t value = *(int64_t*)&indexers[j][idx * indexer_strides[j]];
int64_t size = original_sizes[j];
if (value < -size || value >= size) {
AT_INDEX_ERROR("index ", value, " is out of bounds for dimension ", j, " with size ", size);
}
if (value < 0) {
value += size;
}
offset += value * original_strides[j];
}
return offset;
}
};
static bool is_constant_index(int ntensor, const int64_t* strides) {
AT_ASSERT(ntensor >= 3);
for (int arg = 2; arg < ntensor; arg++) {
if (strides[arg] != 0) {
return false;
}
}
return true;
}
template <typename scalar_t, typename func_t>
void cpu_index_kernel(TensorIterator& iter, IntArrayRef index_size, IntArrayRef index_stride,
const func_t& f, bool serial_execution=false)
{
int ntensor = iter.ntensors();
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
auto indexer = Indexer(ntensor - 2, &data[2], &strides[2], index_size, index_stride);
char* dst = data[0];
char* src = data[1];
if (is_constant_index(ntensor, strides)) {
// specialization for when every element uses the same index
int64_t offset = indexer.get(0);
if (strides[0] == sizeof(scalar_t) && strides[1] == sizeof(scalar_t)) {
for (int64_t i = 0; i < n; i++) {
f(dst + strides[0] * i, src + strides[1] * i, offset);
}
} else {
for (int64_t i = 0; i < n; i++) {
f(dst + strides[0] * i, src + strides[1] * i, offset);
}
}
} else {
for (int64_t i = 0; i < n; i++) {
int64_t offset = indexer.get(i);
f(dst + strides[0] * i, src + strides[1] * i, offset);
}
}
};
if (serial_execution) {
iter.serial_for_each(loop, {0, iter.numel()});
} else {
iter.for_each(loop);
}
}
void index_kernel(TensorIterator& iter, IntArrayRef index_size, IntArrayRef index_stride) {
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(at::ScalarType::Half, at::ScalarType::Bool, at::ScalarType::BFloat16,
iter.dtype(), "index_cpu", [&] {
cpu_index_kernel<scalar_t>(iter, index_size, index_stride, [](char* dst, char* src, int64_t offset) {
*(scalar_t*)dst = *(scalar_t*)(src + offset);
});
});
}
void index_put_kernel(TensorIterator& iter, IntArrayRef index_size, IntArrayRef index_stride, bool accumulate) {
// NOTE: duplicate indices are only supported if accumulate is true.
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND3(at::ScalarType::Half, at::ScalarType::Bool, at::ScalarType::BFloat16,
iter.dtype(), "index_put", [&] {
if (accumulate) {
// TODO: investigate parallelization of the accumulate kernel. Unlike the non-accumulate case,
// this needs to be thread-safe.
cpu_index_kernel<scalar_t>(iter, index_size, index_stride, [](char* dst, char* src, int64_t offset) {
*(scalar_t*)(dst + offset) += *(scalar_t*)src;
}, /*serial_execution=*/true);
} else {
cpu_index_kernel<scalar_t>(iter, index_size, index_stride, [](char* dst, char* src, int64_t offset) {
*(scalar_t*)(dst + offset) = *(scalar_t*)src;
});
}
});
}
template <typename scalar_t, typename mask_t>
void cpu_masked_fill_kernel(TensorIterator& iter, scalar_t value) {
auto is_mask_bool = std::is_same<mask_t, bool>::value;
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
char* dst = data[0];
char* mask = data[1];
for (int64_t i = 0; i < n; i++) {
mask_t mask_value = *(mask_t*)(mask + strides[1] * i);
if (!is_mask_bool) {
TORCH_CHECK(mask_value == 0 || mask_value == 1, "Mask tensor can take 0 and 1 values only");
}
if (mask_value) {
*(scalar_t*)(dst + strides[0] * i) = value;
}
}
};
iter.for_each(loop);
}
void masked_fill_kernel(TensorIterator& iter, Scalar value) {
AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::Bool, at::ScalarType::BFloat16,
iter.dtype(), "masked_fill", [&] {
scalar_t scalar_val = value.to<scalar_t>();
auto mask_dtype = iter.input_dtype(0);
if (mask_dtype == at::ScalarType::Bool) {
cpu_masked_fill_kernel<scalar_t, bool>(iter, scalar_val);
} else {
cpu_masked_fill_kernel<scalar_t, unsigned char>(iter, scalar_val);
}
});
}
} // anonymous namespace
REGISTER_DISPATCH(index_stub, &index_kernel);
REGISTER_DISPATCH(index_put_stub, &index_put_kernel);
REGISTER_DISPATCH(masked_fill_stub, &masked_fill_kernel);
}} // namespace at::native