-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtools.py
561 lines (437 loc) · 14.3 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import hashlib
import binascii
from ctypes import *
import ipaddress
import struct
import asyncio
import time
import random
import struct
import hmac
SIGHASH_ALL = 0x00000001
SIGHASH_NONE = 0x00000002
SIGHASH_SINGLE = 0x00000003
SIGHASH_ANYONECANPAY = 0x00000080
HDW_PURPOSE = 0x8000002C # bip 43
HDW_BITCOIN = 0x80000000 # bitcoin
SCRIPT_TYPES = {"P2PKH": 0,
"P2SH": 1,
"PUBKEY": 2,
"NULL_DATA": 3,
"MULTISIG": 4,
"NON_STANDART": 5,
"SP2PKH": 6
}
b58_digits = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
def encode_base58(b):
"""Encode bytes to a base58-encoded string"""
# Convert big-endian bytes to integer
n = int('0x0' + binascii.hexlify(b).decode('utf8'), 16)
# Divide that integer into bas58
res = []
while n > 0:
n, r = divmod(n, 58)
res.append(b58_digits[r])
res = ''.join(res[::-1])
# Encode leading zeros as base58 zeros
czero = 0
pad = 0
for c in b:
if c == czero:
pad += 1
else:
break
return b58_digits[0] * pad + res
def decode_base58(s):
"""Decode a base58-encoding string, returning bytes"""
if not s:
return b''
# Convert the string to an integer
n = 0
for c in s:
n *= 58
if c not in b58_digits:
raise Exception('Character %r is not a valid base58 character' % c)
digit = b58_digits.index(c)
n += digit
# Convert the integer to bytes
h = '%x' % n
if len(h) % 2:
h = '0' + h
res = binascii.unhexlify(h.encode('utf8'))
# Add padding back.
pad = 0
for c in s[:-1]:
if c == b58_digits[0]:
pad += 1
else:
break
return b'\x00' * pad + res
def hmac_sha512(key, data):
return hmac.new(key, data, hashlib.sha512).digest()
def priv_from_int(k):
return int.to_bytes(k, byteorder="big", length=32)
def priv2WIF(h, compressed=False, testnet=False):
# uncompressed: 0x80 + [32-byte secret] + [4 bytes of Hash() of previous 33 bytes], base58 encoded
# compressed: 0x80 + [32-byte secret] + 0x01 + [4 bytes of Hash() previous 34 bytes], base58 encoded
prefix = b'\x80'
if testnet:
prefix = b'\xef'
h = prefix + h
if compressed: h += b'\x01'
h += hashlib.sha256(hashlib.sha256(h).digest()).digest()[:4]
return encode_base58(h)
def WIF2priv(h):
h = decode_base58(h)
return h[1:33]
def is_WIF_valid(wif):
if wif[0] not in ['5', 'K', 'L', '9', 'c']:
return False
h = decode_base58(wif)
if len(h) != 37: return False
checksum = h[-4:]
if hashlib.sha256(hashlib.sha256(h[:-4]).digest()).digest()[:4] != checksum: return False
return True
def priv2pub(private_key, compressed=False):
pub = create_string_buffer(64)
ECDSA.secp256k1_ec_pubkey_create(ECDSA_VERIFY_CONTEXT, pub, private_key)
pp = create_string_buffer(65)
s = c_int(65)
ECDSA.secp256k1_ec_pubkey_serialize(ECDSA_VERIFY_CONTEXT, pp, pointer(s), pub, int(compressed))
return pp.raw[:s.value]
def pub2address(pubkey, testnet=False):
if not testnet:
return v_ripemd2address(b'\x00' + pub2ripemd160(pubkey))
else:
return v_ripemd2address(b'\x6f' + pub2ripemd160(pubkey))
def is_valid_pub(key):
if len(key) < 33:
return False
if key[0] == 0x04 and len(key) != 65:
return False
elif key[0] == 0x02 or key[0] == 0x03:
if len(key) != 33:
return False
# else: return False
return True
def pub2ripemd160(pubkey):
return ripemd160(hashlib.sha256(pubkey).digest())
def v_ripemd2address(h):
h += hashlib.sha256(hashlib.sha256(h).digest()).digest()[:4]
return encode_base58(h)
def ripemd2address(h, testnet=False, p2sh=False):
if not p2sh:
prefix = b'\x6f' if testnet else b'\x00'
else:
prefix = b'\xc4' if testnet else b'\x05'
h = prefix + h
h += hashlib.sha256(hashlib.sha256(h).digest()).digest()[:4]
return encode_base58(h)
# BIP32
#
#
#
def BIP32_create_master():
rnd = random.SystemRandom()
a = rnd.randint(0, MAX_INT_PRIVATE_KEY)
i = int((time.time() % 0.01) * 100000)
h = a.to_bytes(32, byteorder="big")
Key = b"Bitcoin seed"
while True:
h = hashlib.sha256(h).digest()
if i > 1:
i -= 1
else:
if int.from_bytes(h, byteorder="big") < MAX_INT_PRIVATE_KEY:
break
I = hmac_sha512(Key, h)
M, C = I[:32], I[32:]
return b'\x04\x88\xAD\xE4\x00\x00\x00\x00\x00\x00\x00\x00\x00' + C + b'\x00' + M
def CKDpriv(extended_master_key, i):
C = extended_master_key[13:45]
M = extended_master_key[45:]
version = extended_master_key[:4]
depth = int.from_bytes(extended_master_key[4:5], byteorder='big') + 1
if depth > 255: return None
Mpub = priv2pub(M[1:], True)
I = hmac_sha512(C, M + struct.pack(">L", i)) if i >= 0x80000000 \
else hmac_sha512(C, Mpub + struct.pack(">L", i))
code = I[32:]
Iln = int.from_bytes(I[:32], byteorder='big')
if Iln > ECDSA_SEC256K1_ORDER: return None
k_int = (int.from_bytes(M[1:], byteorder='big') + Iln) % ECDSA_SEC256K1_ORDER
if k_int == 0: return None
key = priv_from_int(k_int)
return version + depth.to_bytes(1, byteorder='big') + pub2ripemd160(Mpub)[:4] + i.to_bytes(4,
byteorder='big') + code + b'\x00' + key
def CKDpub(extended_master_key, i):
C = extended_master_key[13:45]
Mpub = extended_master_key[45:]
version = extended_master_key[:4]
depth = int.from_bytes(extended_master_key[4:5], byteorder='big') + 1
if depth > 255 or i >= 0x80000000: return None
I = hmac_sha512(C, Mpub + struct.pack(">L", i))
code = I[32:]
if int.from_bytes(I[:32], byteorder='big') > ECDSA_SEC256K1_ORDER: return None
pk = create_string_buffer(64)
if not ECDSA.secp256k1_ec_pubkey_parse(ECDSA_VERIFY_CONTEXT, pk, Mpub, len(Mpub)): return None
if not ECDSA.secp256k1_ec_pubkey_tweak_add(ECDSA_VERIFY_CONTEXT, pk, I[:32]): return None
pp = create_string_buffer(65)
s = c_int(65)
ECDSA.secp256k1_ec_pubkey_serialize(ECDSA_VERIFY_CONTEXT, pp, pointer(s), pk, 1)
key = pp.raw[:s.value]
return version + depth.to_bytes(1, byteorder='big') + pub2ripemd160(Mpub)[:4] + i.to_bytes(4,
byteorder='big') + code + key
def ext_key_base58(k):
k += double_sha256(k)[:4]
return encode_base58(k)
def base58_to_ext_key(k):
k = decode_base58(k)
return k[:-4]
def BIP32_derive_key(extended_master_key, path, index):
# m / purpose' / coin_type' / account' / change / address_index
# 0x0488B21E public, 0x0488ADE4 private;
# purpose = 0x8000002C
# coin_tipe = 0x80000000
version = extended_master_key[:4]
depth = int.from_bytes(extended_master_key[4:5], byteorder='big')
if depth > len(path): return None
path = path[depth:]
if version == b'\x04\x88\xAD\xE4':
# derive private key
for p in path: extended_master_key = CKDpriv(extended_master_key, p)
return CKDpriv(extended_master_key, index)
elif version == b'\x04\x88\xB2\x1E':
# derive public key
for p in path: extended_master_key = CKDpub(extended_master_key, p)
return CKDpub(extended_master_key, index)
def xpub_from_xpriv(xpriv):
Mpub = priv2pub(xpriv[46:], True)
return b'\x04\x88\xB2\x1E' + xpriv[4:45] + Mpub
def var_int(data):
e, s = 1, 0
if data[:1] == b'\xfd':
s, e = 1, 3
elif data[:1] == b'\xfe':
s = 1
e = 5
elif data[:1] == b'\xff':
s = 1
e = 9
i = int.from_bytes(data[s:e], byteorder='little', signed=False)
return (i, e)
def from_var_int(data):
# retrun
e = 1
s = 0
if data[:1] == b'\xfd':
s = 1
e = 3
elif data[:1] == b'\xfe':
s = 1
e = 5
elif data[:1] == b'\xff':
s = 1
e = 9
i = int.from_bytes(data[s:e], byteorder='little', signed=False)
return i
def var_int_len(byte):
e = 1
if byte == 253:
e = 3
elif byte == 254:
e = 5
elif byte == 255:
e = 9
return e
def to_var_int(i):
if i < 253:
return i.to_bytes(1, byteorder='little')
if i <= 0xffff:
return b'\xfd' + i.to_bytes(2, byteorder='little')
if i <= 0xffffffff:
return b'\xfe' + i.to_bytes(4, byteorder='little')
return b'\xff' + i.to_bytes(8, byteorder='little')
def read_var_int(stream):
l = stream.read(1)
bytes_length = var_int_len(l[0])
return l + stream.read(bytes_length - 1)
def read_var_list(stream, data_type):
count = from_var_int(read_var_int(stream))
return [data_type.deserialize(stream) for i in range(count)]
def ripemd160(byte_string):
h = hashlib.new('ripemd160')
h.update(byte_string)
return h.digest()
def double_sha256(byte_string):
return hashlib.sha256(hashlib.sha256(byte_string).digest()).digest()
def merkleroot(tx_hash_list):
tx_hash_list = list(tx_hash_list)
if len(tx_hash_list) == 1:
return tx_hash_list[0]
while True:
new_hash_list = list()
while tx_hash_list:
h1 = tx_hash_list.pop()
try:
h2 = tx_hash_list.pop()
except:
h2 = h1
new_hash_list.insert(0, double_sha256(h1 + h2))
if len(new_hash_list) > 1:
tx_hash_list = new_hash_list
else:
return new_hash_list[0]
# generic big endian MPI format
def bn_bytes(v, have_ext=False):
ext = 0
if have_ext:
ext = 1
return ((v.bit_length() + 7) // 8) + ext
def bn2bin(v):
s = bytearray()
i = bn_bytes(v)
while i > 0:
s.append((v >> ((i - 1) * 8)) & 0xff)
i -= 1
return s
def bin2bn(s):
l = 0
for ch in s:
l = (l << 8) | ch
return l
def bn2mpi(v):
have_ext = False
if v.bit_length() > 0:
have_ext = (v.bit_length() & 0x07) == 0
neg = False
if v < 0:
neg = True
v = -v
s = struct.pack(b">I", bn_bytes(v, have_ext))
ext = bytearray()
if have_ext:
ext.append(0)
v_bin = bn2bin(v)
if neg:
if have_ext:
ext[0] |= 0x80
else:
v_bin[0] |= 0x80
return s + ext + v_bin
def mpi2bn(s):
if len(s) < 4:
return None
s_size = bytes(s[:4])
v_len = struct.unpack(b">I", s_size)[0]
if len(s) != (v_len + 4):
return None
if v_len == 0:
return 0
v_str = bytearray(s[4:])
neg = False
i = v_str[0]
if i & 0x80:
neg = True
i &= ~0x80
v_str[0] = i
v = bin2bn(v_str)
if neg:
return -v
return v
# bitcoin-specific little endian format, with implicit size
def mpi2vch(s):
r = s[4:] # strip size
# if r:
r = r[::-1] # reverse string, converting BE->LE
# else: r=b'\x00'
return r
def bn2vch(v):
return bytes(mpi2vch(bn2mpi(v)))
def vch2mpi(s):
r = struct.pack(b">I", len(s)) # size
r += s[::-1] # reverse string, converting LE->BE
return r
def vch2bn(s):
return mpi2bn(vch2mpi(s))
def i2b(i): return bn2vch(i)
def b2i(b): return vch2bn(b)
def rh2s(tthash):
return binascii.hexlify(tthash[::-1]).decode()
def chunks(l, n):
for i in range(0, len(l), n):
yield l[i:i + n]
def is_valid_signature_encoding(sig):
# Format: 0x30 [total-length] 0x02 [R-length] [R] 0x02 [S-length] [S] [sighash]
# * total-length: 1-byte length descriptor of everything that follows,
# excluding the sighash byte.
# * R-length: 1-byte length descriptor of the R value that follows.
# * R: arbitrary-length big-endian encoded R value. It must use the shortest
# possible encoding for a positive integers (which means no null bytes at
# the start, except a single one when the next byte has its highest bit set).
# * S-length: 1-byte length descriptor of the S value that follows.
# * S: arbitrary-length big-endian encoded S value. The same rules apply.
# * sighash: 1-byte value indicating what data is hashed (not part of the DER
# signature)
length = len(sig)
# Minimum and maximum size constraints.
if (length < 9) or (length > 73):
return False
# A signature is of type 0x30 (compound).
if sig[0] != 0x30:
return False
# Make sure the length covers the entire signature.
if sig[1] != (length - 3):
return False
# Extract the length of the R element.
lenR = sig[3]
print(lenR)
# Make sure the length of the S element is still inside the signature.
if (5 + lenR) >= length:
return False
# Extract the length of the S element.
lenS = sig[5 + lenR]
print(lenS)
# Verify that the length of the signature matches the sum of the length
# of the elements.
if (lenR + lenS + 7) != length:
return False
# Check whether the R element is an integer.
if sig[2] != 0x02:
return False
# Zero-length integers are not allowed for R.
if lenR == 0:
return False
# Negative numbers are not allowed for R.
if sig[4] & 0x80:
return False
# Null bytes at the start of R are not allowed, unless R would
# otherwise be interpreted as a negative number.
if (lenR > 1) and (sig[4] == 0x00) and (not sig[5] & 0x80):
return False
# Check whether the S element is an integer.
if sig[lenR + 4] != 0x02:
return False
# Zero-length integers are not allowed for S.
if lenS == 0:
return False
# Negative numbers are not allowed for S.
if sig[lenR + 6] & 0x80:
return False
# Null bytes at the start of S are not allowed, unless S would otherwise be
# interpreted as a negative number.
if (lenS > 1) and (sig[lenR + 6] == 0x00) and (not sig[lenR + 7] & 0x80):
return False
return True
def is_address_valid(addr, testnet=False):
if testnet:
if addr[0] not in ('m', 'n', '2'):
return False
else:
if addr[0] not in ('1', '3'):
return False
h = decode_base58(addr)
if len(h) != 25: return False
checksum = h[-4:]
if hashlib.sha256(hashlib.sha256(h[:-4]).digest()).digest()[:4] != checksum: return False
return True