Skip to content

Commit 4d16e90

Browse files
committed
Signed-digit based ecmult_const algorithm
1 parent ba523be commit 4d16e90

File tree

2 files changed

+217
-87
lines changed

2 files changed

+217
-87
lines changed

src/ecmult_const_impl.h

+216-86
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
11
/***********************************************************************
2-
* Copyright (c) 2015 Pieter Wuille, Andrew Poelstra *
2+
* Copyright (c) 2015, 2022 Pieter Wuille, Andrew Poelstra *
33
* Distributed under the MIT software license, see the accompanying *
44
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
55
***********************************************************************/
@@ -12,45 +12,96 @@
1212
#include "ecmult_const.h"
1313
#include "ecmult_impl.h"
1414

15+
#if defined(EXHAUSTIVE_TEST_ORDER)
16+
/* We need 2^ECMULT_CONST_GROUP_SIZE - 1 to be less than EXHAUSTIVE_TEST_ORDER, because
17+
* the tables cannot have infinities in them (this breaks the effective-affine technique's
18+
* z-ratio tracking) */
19+
# if EXHAUSTIVE_TEST_ORDER == 199
20+
# define ECMULT_CONST_GROUP_SIZE 4
21+
# elif EXHAUSTIVE_TEST_ORDER == 13
22+
# define ECMULT_CONST_GROUP_SIZE 3
23+
# elif EXHAUSTIVE_TEST_ORDER == 7
24+
# define ECMULT_CONST_GROUP_SIZE 2
25+
# else
26+
# error "Unknown EXHAUSTIVE_TEST_ORDER"
27+
# endif
28+
#else
29+
/* Group size 4 or 5 appears optimal. */
30+
# define ECMULT_CONST_GROUP_SIZE 5
31+
#endif
32+
33+
#define ECMULT_CONST_TABLE_SIZE (1L << (ECMULT_CONST_GROUP_SIZE - 1))
34+
#define ECMULT_CONST_GROUPS ((129 + ECMULT_CONST_GROUP_SIZE - 1) / ECMULT_CONST_GROUP_SIZE)
35+
#define ECMULT_CONST_BITS (ECMULT_CONST_GROUPS * ECMULT_CONST_GROUP_SIZE)
36+
1537
/** Fill a table 'pre' with precomputed odd multiples of a.
1638
*
1739
* The resulting point set is brought to a single constant Z denominator, stores the X and Y
18-
* coordinates as ge_storage points in pre, and stores the global Z in globalz.
19-
* It only operates on tables sized for WINDOW_A wnaf multiples.
40+
* coordinates as ge points in pre, and stores the global Z in globalz.
41+
*
42+
* 'pre' must be an array of size ECMULT_CONST_TABLE_SIZE.
2043
*/
21-
static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) {
22-
secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)];
44+
static void secp256k1_ecmult_const_odd_multiples_table_globalz(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) {
45+
secp256k1_fe zr[ECMULT_CONST_TABLE_SIZE];
2346

24-
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), pre, zr, globalz, a);
25-
secp256k1_ge_table_set_globalz(ECMULT_TABLE_SIZE(WINDOW_A), pre, zr);
47+
secp256k1_ecmult_odd_multiples_table(ECMULT_CONST_TABLE_SIZE, pre, zr, globalz, a);
48+
secp256k1_ge_table_set_globalz(ECMULT_CONST_TABLE_SIZE, pre, zr);
2649
}
2750

28-
/* This is like `ECMULT_TABLE_GET_GE` but is constant time */
29-
#define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \
30-
int m = 0; \
31-
/* Extract the sign-bit for a constant time absolute-value. */ \
32-
int volatile mask = (n) >> (sizeof(n) * CHAR_BIT - 1); \
33-
int abs_n = ((n) + mask) ^ mask; \
34-
int idx_n = abs_n >> 1; \
51+
/* Given a table 'pre' with odd multiples of a point, put in r the signed-bit multiplication of n with that point.
52+
*
53+
* For example, if ECMULT_CONST_GROUP_SIZE is 4, then pre is expected to contain 8 entries:
54+
* [1*P, 3*P, 5*P, 7*P, 9*P, 11*P, 13*P, 15*P]. n is then expected to be a 4-bit integer (range 0-15), and its
55+
* bits are interpreted as signs of powers of two to look up.
56+
*
57+
* For example, if n=4, which is 0100 in binary, which is interpreted as [- + - -], so the looked up value is
58+
* [ -(2^3) + (2^2) - (2^1) - (2^0) ]*P = -7*P. Every valid n translates to an odd number in range [-15,15],
59+
* which means we just need to look up one of the precomputed values, and optionally negate it.
60+
*/
61+
#define ECMULT_CONST_TABLE_GET_GE(r,pre,n) do { \
62+
unsigned int m = 0; \
63+
/* If the top bit of n is 0, we want the negation. */ \
64+
volatile unsigned int negative = ((n) >> (ECMULT_CONST_GROUP_SIZE - 1)) ^ 1; \
65+
/* Let n[i] be the i-th bit of n, then the index is
66+
* sum(cnot(n[i]) * 2^i, i=0..l-2)
67+
* where cnot(b) = b if n[l-1] = 1 and 1 - b otherwise.
68+
* For example, if n = 4, in binary 0100, the index is 3, in binary 011.
69+
*
70+
* Proof:
71+
* Let
72+
* x = sum((2*n[i] - 1)*2^i, i=0..l-1)
73+
* = 2*sum(n[i] * 2^i, i=0..l-1) - 2^l + 1
74+
* be the value represented by n.
75+
* The index is (x - 1)/2 if x > 0 and -(x + 1)/2 otherwise.
76+
* Case x > 0:
77+
* n[l-1] = 1
78+
* index = sum(n[i] * 2^i, i=0..l-1) - 2^(l-1)
79+
* = sum(n[i] * 2^i, i=0..l-2)
80+
* Case x <= 0:
81+
* n[l-1] = 0
82+
* index = -(2*sum(n[i] * 2^i, i=0..l-1) - 2^l + 2)/2
83+
* = 2^(l-1) - 1 - sum(n[i] * 2^i, i=0..l-1)
84+
* = sum((1 - n[i]) * 2^i, i=0..l-2)
85+
*/ \
86+
unsigned int index = ((unsigned int)(-negative) ^ n) & ((1U << (ECMULT_CONST_GROUP_SIZE - 1)) - 1U); \
3587
secp256k1_fe neg_y; \
36-
VERIFY_CHECK(((n) & 1) == 1); \
37-
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
38-
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
88+
VERIFY_CHECK((n) < (1U << ECMULT_CONST_GROUP_SIZE)); \
89+
VERIFY_CHECK(index < (1U << (ECMULT_CONST_GROUP_SIZE - 1))); \
3990
VERIFY_SETUP(secp256k1_fe_clear(&(r)->x)); \
4091
VERIFY_SETUP(secp256k1_fe_clear(&(r)->y)); \
41-
/* Unconditionally set r->x = (pre)[m].x. r->y = (pre)[m].y. because it's either the correct one \
92+
/* Unconditionally set r->x = (pre)[m].x. r->y = (pre)[m].y. because it's either the correct one
4293
* or will get replaced in the later iterations, this is needed to make sure `r` is initialized. */ \
4394
(r)->x = (pre)[m].x; \
4495
(r)->y = (pre)[m].y; \
45-
for (m = 1; m < ECMULT_TABLE_SIZE(w); m++) { \
96+
for (m = 1; m < ECMULT_CONST_TABLE_SIZE; m++) { \
4697
/* This loop is used to avoid secret data in array indices. See
4798
* the comment in ecmult_gen_impl.h for rationale. */ \
48-
secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == idx_n); \
49-
secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == idx_n); \
99+
secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == index); \
100+
secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == index); \
50101
} \
51102
(r)->infinity = 0; \
52103
secp256k1_fe_negate(&neg_y, &(r)->y, 1); \
53-
secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \
104+
secp256k1_fe_cmov(&(r)->y, &neg_y, negative); \
54105
} while(0)
55106

56107
/** Convert a number to WNAF notation.
@@ -130,90 +181,169 @@ static int secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar *scalar, int w
130181
return skew;
131182
}
132183

133-
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar) {
134-
secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
135-
secp256k1_ge tmpa;
136-
secp256k1_fe Z;
137-
138-
int skew_1;
139-
secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
140-
int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)];
141-
int skew_lam;
142-
secp256k1_scalar q_1, q_lam;
143-
int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)];
184+
/* For K as defined in the comment of secp256k1_ecmult_const, we have several precomputed
185+
* formulas/constants.
186+
* - in exhaustive test mode, we give an explicit expression to compute it at compile time: */
187+
#ifdef EXHAUSTIVE_TEST_ORDER
188+
static const secp256k1_scalar secp256k1_ecmult_const_K = ((SECP256K1_SCALAR_CONST(0, 0, 0, (1U << (ECMULT_CONST_BITS - 128)) - 2U, 0, 0, 0, 0) + EXHAUSTIVE_TEST_ORDER - 1U) * (1U + EXHAUSTIVE_TEST_LAMBDA)) % EXHAUSTIVE_TEST_ORDER;
189+
/* - for the real secp256k1 group we have constants for various ECMULT_CONST_BITS values. */
190+
#elif ECMULT_CONST_BITS == 129
191+
/* For GROUP_SIZE = 1,3. */
192+
static const secp256k1_scalar secp256k1_ecmult_const_K = SECP256K1_SCALAR_CONST(0xac9c52b3ul, 0x3fa3cf1ful, 0x5ad9e3fdul, 0x77ed9ba4ul, 0xa880b9fcul, 0x8ec739c2ul, 0xe0cfc810ul, 0xb51283ceul);
193+
#elif ECMULT_CONST_BITS == 130
194+
/* For GROUP_SIZE = 2,5. */
195+
static const secp256k1_scalar secp256k1_ecmult_const_K = SECP256K1_SCALAR_CONST(0xa4e88a7dul, 0xcb13034eul, 0xc2bdd6bful, 0x7c118d6bul, 0x589ae848ul, 0x26ba29e4ul, 0xb5c2c1dcul, 0xde9798d9ul);
196+
#elif ECMULT_CONST_BITS == 132
197+
/* For GROUP_SIZE = 4,6 */
198+
static const secp256k1_scalar secp256k1_ecmult_const_K = SECP256K1_SCALAR_CONST(0x76b1d93dul, 0x0fae3c6bul, 0x3215874bul, 0x94e93813ul, 0x7937fe0dul, 0xb66bcaaful, 0xb3749ca5ul, 0xd7b6171bul);
199+
#else
200+
# error "Unknown ECMULT_CONST_BITS"
201+
#endif
144202

145-
int i;
203+
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q) {
204+
/* The approach below combines the signed-digit logic from Mike Hamburg's
205+
* "Fast and compact elliptic-curve cryptography" (https://eprint.iacr.org/2012/309)
206+
* Section 3.3, with the GLV endomorphism.
207+
*
208+
* The idea there is to interpret the bits of a scalar as signs (1 = +, 0 = -), and compute a
209+
* point multiplication in that fashion. Let v be an n-bit non-negative integer (0 <= v < 2^n),
210+
* and v[i] its i'th bit (so v = sum(v[i] * 2^i, i=0..n-1)). Then define:
211+
*
212+
* C_l(v, A) = sum((2*v[i] - 1) * 2^i*A, i=0..l-1)
213+
*
214+
* Then it holds that C_l(v, A) = sum((2*v[i] - 1) * 2^i*A, i=0..l-1)
215+
* = (2*sum(v[i] * 2^i, i=0..l-1) + 1 - 2^l) * A
216+
* = (2*v + 1 - 2^l) * A
217+
*
218+
* Thus, one can compute q*A as C_256((q + 2^256 - 1) / 2, A). This is the basis for the
219+
* paper's signed-digit multi-comb algorithm for multiplication using a precomputed table.
220+
*
221+
* It is appealing to try to combine this with the GLV optimization: the idea that a scalar
222+
* s can be written as s1 + lambda*s2, where lambda is a curve-specific constant such that
223+
* lambda*A is easy to compute, and where s1 and s2 are small. In particular we have the
224+
* secp256k1_scalar_split_lambda function which performs such a split with the resulting s1
225+
* and s2 in range (-2^128, 2^128) mod n. This does work, but is uninteresting:
226+
*
227+
* To compute q*A:
228+
* - Let s1, s2 = split_lambda(q)
229+
* - Let R1 = C_256((s1 + 2^256 - 1) / 2, A)
230+
* - Let R2 = C_256((s2 + 2^256 - 1) / 2, lambda*A)
231+
* - Return R1 + R2
232+
*
233+
* The issue is that while s1 and s2 are small-range numbers, (s1 + 2^256 - 1) / 2 (mod n)
234+
* and (s2 + 2^256 - 1) / 2 (mod n) are not, undoing the benefit of the splitting.
235+
*
236+
* To make it work, we want to modify the input scalar q first, before splitting, and then only
237+
* add a 2^128 offset of the split results (so that they end up in the single 129-bit range
238+
* [0,2^129]). A slightly smaller offset would work due to the bounds on the split, but we pick
239+
* 2^128 for simplicity. Let s be the scalar fed to split_lambda, and f(q) the function to
240+
* compute it from q:
241+
*
242+
* To compute q*A:
243+
* - Compute s = f(q)
244+
* - Let s1, s2 = split_lambda(s)
245+
* - Let v1 = s1 + 2^128 (mod n)
246+
* - Let v2 = s2 + 2^128 (mod n)
247+
* - Let R1 = C_l(v1, A)
248+
* - Let R2 = C_l(v2, lambda*A)
249+
* - Return R1 + R2
250+
*
251+
* l will thus need to be at least 129, but we may overshoot by a few bits (see
252+
* further), so keep it as a variable.
253+
*
254+
* To solve for s, we reason:
255+
* q*A = R1 + R2
256+
* <=> q*A = C_l(s1 + 2^128, A) + C_l(s2 + 2^128, lambda*A)
257+
* <=> q*A = (2*(s1 + 2^128) + 1 - 2^l) * A + (2*(s2 + 2^128) + 1 - 2^l) * lambda*A
258+
* <=> q*A = (2*(s1 + s2*lambda) + (2^129 + 1 - 2^l) * (1 + lambda)) * A
259+
* <=> q = 2*(s1 + s2*lambda) + (2^129 + 1 - 2^l) * (1 + lambda) (mod n)
260+
* <=> q = 2*s + (2^129 + 1 - 2^l) * (1 + lambda) (mod n)
261+
* <=> s = (q + (2^l - 2^129 - 1) * (1 + lambda)) / 2 (mod n)
262+
* <=> f(q) = (q + K) / 2 (mod n)
263+
* where K = (2^l - 2^129 - 1)*(1 + lambda) (mod n)
264+
*
265+
* We will process the computation of C_l(v1, A) and C_l(v2, lambda*A) in groups of
266+
* ECMULT_CONST_GROUP_SIZE, so we set l to the smallest multiple of ECMULT_CONST_GROUP_SIZE
267+
* that is not less than 129; this equals ECMULT_CONST_BITS.
268+
*/
146269

270+
/* The offset to add to s1 and s2 to make them non-negative. Equal to 2^128. */
271+
static const secp256k1_scalar S_OFFSET = SECP256K1_SCALAR_CONST(0, 0, 0, 1, 0, 0, 0, 0);
272+
secp256k1_scalar s, v1, v2;
273+
secp256k1_ge pre_a[ECMULT_CONST_TABLE_SIZE];
274+
secp256k1_ge pre_a_lam[ECMULT_CONST_TABLE_SIZE];
275+
secp256k1_fe global_z;
276+
int group, i;
277+
278+
/* We're allowed to be non-constant time in the point, and the code below (in particular,
279+
* secp256k1_ecmult_const_odd_multiples_table_globalz) cannot deal with infinity in a
280+
* constant-time manner anyway. */
147281
if (secp256k1_ge_is_infinity(a)) {
148282
secp256k1_gej_set_infinity(r);
149283
return;
150284
}
151285

152-
/* build wnaf representation for q. */
153-
/* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */
154-
secp256k1_scalar_split_lambda(&q_1, &q_lam, scalar);
155-
skew_1 = secp256k1_wnaf_const(wnaf_1, &q_1, WINDOW_A - 1, 128);
156-
skew_lam = secp256k1_wnaf_const(wnaf_lam, &q_lam, WINDOW_A - 1, 128);
286+
/* Compute v1 and v2. */
287+
secp256k1_scalar_add(&s, q, &secp256k1_ecmult_const_K);
288+
secp256k1_scalar_half(&s, &s);
289+
secp256k1_scalar_split_lambda(&v1, &v2, &s);
290+
secp256k1_scalar_add(&v1, &v1, &S_OFFSET);
291+
secp256k1_scalar_add(&v2, &v2, &S_OFFSET);
157292

158-
/* Calculate odd multiples of a.
293+
#ifdef VERIFY
294+
/* Verify that v1 and v2 are in range [0, 2^129-1]. */
295+
for (i = 129; i < 256; ++i) {
296+
VERIFY_CHECK(secp256k1_scalar_get_bits(&v1, i, 1) == 0);
297+
VERIFY_CHECK(secp256k1_scalar_get_bits(&v2, i, 1) == 0);
298+
}
299+
#endif
300+
301+
/* Calculate odd multiples of A and A*lambda.
159302
* All multiples are brought to the same Z 'denominator', which is stored
160-
* in Z. Due to secp256k1' isomorphism we can do all operations pretending
303+
* in global_z. Due to secp256k1' isomorphism we can do all operations pretending
161304
* that the Z coordinate was 1, use affine addition formulae, and correct
162305
* the Z coordinate of the result once at the end.
163306
*/
164-
VERIFY_CHECK(!a->infinity);
165307
secp256k1_gej_set_ge(r, a);
166-
secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r);
167-
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
168-
secp256k1_fe_normalize_weak(&pre_a[i].y);
169-
}
170-
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
308+
secp256k1_ecmult_const_odd_multiples_table_globalz(pre_a, &global_z, r);
309+
for (i = 0; i < ECMULT_CONST_TABLE_SIZE; i++) {
171310
secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
172311
}
173312

174-
/* first loop iteration (separated out so we can directly set r, rather
175-
* than having it start at infinity, get doubled several times, then have
176-
* its new value added to it) */
177-
i = wnaf_1[WNAF_SIZE_BITS(128, WINDOW_A - 1)];
178-
VERIFY_CHECK(i != 0);
179-
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
180-
secp256k1_gej_set_ge(r, &tmpa);
181-
i = wnaf_lam[WNAF_SIZE_BITS(128, WINDOW_A - 1)];
182-
VERIFY_CHECK(i != 0);
183-
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A);
184-
secp256k1_gej_add_ge(r, r, &tmpa);
185-
/* remaining loop iterations */
186-
for (i = WNAF_SIZE_BITS(128, WINDOW_A - 1) - 1; i >= 0; i--) {
187-
int n;
313+
/* Next, we compute r = C_l(v1, A) + C_l(v2, lambda*A).
314+
*
315+
* We proceed in groups of ECMULT_CONST_GROUP_SIZE bits, operating on that many bits
316+
* at a time, from high in v1, v2 to low. Call these bits1 (from v1) and bits2 (from v2).
317+
*
318+
* Now note that ECMULT_CONST_TABLE_GET_GE(&t, pre_a, bits1) loads into t a point equal
319+
* to C_{ECMULT_CONST_GROUP_SIZE}(bits1, A), and analogously for pre_lam_a / bits2.
320+
* This means that all we need to do is add these looked up values together, multiplied
321+
* by 2^(ECMULT_GROUP_SIZE * group).
322+
*/
323+
for (group = ECMULT_CONST_GROUPS - 1; group >= 0; --group) {
324+
/* Using the _var get_bits function is ok here, since it's only variable in offset and count, not in the scalar. */
325+
unsigned int bits1 = secp256k1_scalar_get_bits_var(&v1, group * ECMULT_CONST_GROUP_SIZE, ECMULT_CONST_GROUP_SIZE);
326+
unsigned int bits2 = secp256k1_scalar_get_bits_var(&v2, group * ECMULT_CONST_GROUP_SIZE, ECMULT_CONST_GROUP_SIZE);
327+
secp256k1_ge t;
188328
int j;
189-
for (j = 0; j < WINDOW_A - 1; ++j) {
190-
secp256k1_gej_double(r, r);
191-
}
192329

193-
n = wnaf_1[i];
194-
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
195-
VERIFY_CHECK(n != 0);
196-
secp256k1_gej_add_ge(r, r, &tmpa);
197-
n = wnaf_lam[i];
198-
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
199-
VERIFY_CHECK(n != 0);
200-
secp256k1_gej_add_ge(r, r, &tmpa);
201-
}
202-
203-
{
204-
/* Correct for wNAF skew */
205-
secp256k1_gej tmpj;
206-
207-
secp256k1_ge_neg(&tmpa, &pre_a[0]);
208-
secp256k1_gej_add_ge(&tmpj, r, &tmpa);
209-
secp256k1_gej_cmov(r, &tmpj, skew_1);
210-
211-
secp256k1_ge_neg(&tmpa, &pre_a_lam[0]);
212-
secp256k1_gej_add_ge(&tmpj, r, &tmpa);
213-
secp256k1_gej_cmov(r, &tmpj, skew_lam);
330+
ECMULT_CONST_TABLE_GET_GE(&t, pre_a, bits1);
331+
if (group == ECMULT_CONST_GROUPS - 1) {
332+
/* Directly set r in the first iteration. */
333+
secp256k1_gej_set_ge(r, &t);
334+
} else {
335+
/* Shift the result so far up. */
336+
for (j = 0; j < ECMULT_CONST_GROUP_SIZE; ++j) {
337+
secp256k1_gej_double(r, r);
338+
}
339+
secp256k1_gej_add_ge(r, r, &t);
340+
}
341+
ECMULT_CONST_TABLE_GET_GE(&t, pre_a_lam, bits2);
342+
secp256k1_gej_add_ge(r, r, &t);
214343
}
215344

216-
secp256k1_fe_mul(&r->z, &r->z, &Z);
345+
/* Map the result back to the secp256k1 curve from the isomorphic curve. */
346+
secp256k1_fe_mul(&r->z, &r->z, &global_z);
217347
}
218348

219349
static int secp256k1_ecmult_const_xonly(secp256k1_fe* r, const secp256k1_fe *n, const secp256k1_fe *d, const secp256k1_scalar *q, int known_on_curve) {

src/scalar.h

+1-1
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ static void secp256k1_scalar_clear(secp256k1_scalar *r);
2525
/** Access bits from a scalar. All requested bits must belong to the same 32-bit limb. */
2626
static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count);
2727

28-
/** Access bits from a scalar. Not constant time. */
28+
/** Access bits from a scalar. Not constant time in offset and count. */
2929
static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count);
3030

3131
/** Set a scalar from a big endian byte array. The scalar will be reduced modulo group order `n`.

0 commit comments

Comments
 (0)