|
| 1 | +/********************************************************************** |
| 2 | + * Copyright (c) 2020 Pieter Wuille * |
| 3 | + * Distributed under the MIT software license, see the accompanying * |
| 4 | + * file COPYING or http://www.opensource.org/licenses/mit-license.php.* |
| 5 | + **********************************************************************/ |
| 6 | + |
| 7 | +#ifndef _SECP256K1_MODULE_SCHNORRSIG_TESTS_EXHAUSTIVE_ |
| 8 | +#define _SECP256K1_MODULE_SCHNORRSIG_TESTS_EXHAUSTIVE_ |
| 9 | + |
| 10 | +#include "include/secp256k1_schnorrsig.h" |
| 11 | +#include "src/modules/schnorrsig/main_impl.h" |
| 12 | + |
| 13 | +static const unsigned char invalid_pubkey_bytes[][32] = { |
| 14 | + /* 0 */ |
| 15 | + { |
| 16 | + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 17 | + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
| 18 | + }, |
| 19 | + /* 2 */ |
| 20 | + { |
| 21 | + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 22 | + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 |
| 23 | + }, |
| 24 | + /* order */ |
| 25 | + { |
| 26 | + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 27 | + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 28 | + ((EXHAUSTIVE_TEST_ORDER + 0UL) >> 24) & 0xFF, |
| 29 | + ((EXHAUSTIVE_TEST_ORDER + 0UL) >> 16) & 0xFF, |
| 30 | + ((EXHAUSTIVE_TEST_ORDER + 0UL) >> 8) & 0xFF, |
| 31 | + (EXHAUSTIVE_TEST_ORDER + 0UL) & 0xFF |
| 32 | + }, |
| 33 | + /* order + 1 */ |
| 34 | + { |
| 35 | + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 36 | + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 37 | + ((EXHAUSTIVE_TEST_ORDER + 1UL) >> 24) & 0xFF, |
| 38 | + ((EXHAUSTIVE_TEST_ORDER + 1UL) >> 16) & 0xFF, |
| 39 | + ((EXHAUSTIVE_TEST_ORDER + 1UL) >> 8) & 0xFF, |
| 40 | + (EXHAUSTIVE_TEST_ORDER + 1UL) & 0xFF |
| 41 | + }, |
| 42 | + /* field size */ |
| 43 | + { |
| 44 | + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
| 45 | + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x2F |
| 46 | + }, |
| 47 | + /* field size + 1 (note that 1 is legal) */ |
| 48 | + { |
| 49 | + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
| 50 | + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x30 |
| 51 | + }, |
| 52 | + /* 2^256 - 1 */ |
| 53 | + { |
| 54 | + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, |
| 55 | + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF |
| 56 | + } |
| 57 | +}; |
| 58 | + |
| 59 | +#define NUM_INVALID_KEYS (sizeof(invalid_pubkey_bytes) / sizeof(invalid_pubkey_bytes[0])) |
| 60 | + |
| 61 | +static int secp256k1_hardened_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg32, |
| 62 | + const unsigned char *key32, const unsigned char *xonly_pk32, |
| 63 | + const unsigned char *algo16, void* data) { |
| 64 | + secp256k1_scalar s; |
| 65 | + int *idata = data; |
| 66 | + (void)msg32; |
| 67 | + (void)key32; |
| 68 | + (void)xonly_pk32; |
| 69 | + (void)algo16; |
| 70 | + secp256k1_scalar_set_int(&s, *idata); |
| 71 | + secp256k1_scalar_get_b32(nonce32, &s); |
| 72 | + return 1; |
| 73 | +} |
| 74 | + |
| 75 | +static void test_exhaustive_schnorrsig_verify(const secp256k1_context *ctx, const secp256k1_xonly_pubkey* pubkeys, unsigned char (*xonly_pubkey_bytes)[32], const int* parities) { |
| 76 | + int d; |
| 77 | + uint64_t iter = 0; |
| 78 | + /* Iterate over the possible public keys to verify against (through their corresponding DL d). */ |
| 79 | + for (d = 1; d <= EXHAUSTIVE_TEST_ORDER / 2; ++d) { |
| 80 | + int actual_d; |
| 81 | + unsigned k; |
| 82 | + unsigned char pk32[32]; |
| 83 | + memcpy(pk32, xonly_pubkey_bytes[d - 1], 32); |
| 84 | + actual_d = parities[d - 1] ? EXHAUSTIVE_TEST_ORDER - d : d; |
| 85 | + /* Iterate over the possible valid first 32 bytes in the signature, through their corresponding DL k. |
| 86 | + Values above EXHAUSTIVE_TEST_ORDER/2 refer to the entries in invalid_pubkey_bytes. */ |
| 87 | + for (k = 1; k <= EXHAUSTIVE_TEST_ORDER / 2 + NUM_INVALID_KEYS; ++k) { |
| 88 | + unsigned char sig64[64]; |
| 89 | + int actual_k = -1; |
| 90 | + int e_done[EXHAUSTIVE_TEST_ORDER] = {0}; |
| 91 | + int e_count_done = 0; |
| 92 | + if (skip_section(&iter)) continue; |
| 93 | + if (k <= EXHAUSTIVE_TEST_ORDER / 2) { |
| 94 | + memcpy(sig64, xonly_pubkey_bytes[k - 1], 32); |
| 95 | + actual_k = parities[k - 1] ? EXHAUSTIVE_TEST_ORDER - k : k; |
| 96 | + } else { |
| 97 | + memcpy(sig64, invalid_pubkey_bytes[k - 1 - EXHAUSTIVE_TEST_ORDER / 2], 32); |
| 98 | + } |
| 99 | + /* Randomly generate messages until all challenges have been hit. */ |
| 100 | + while (e_count_done < EXHAUSTIVE_TEST_ORDER) { |
| 101 | + secp256k1_scalar e; |
| 102 | + unsigned char msg32[32]; |
| 103 | + secp256k1_rand256(msg32); |
| 104 | + secp256k1_schnorrsig_challenge(&e, sig64, msg32, pk32); |
| 105 | + /* Only do work if we hit a challenge we haven't tried before. */ |
| 106 | + if (!e_done[e]) { |
| 107 | + /* Iterate over the possible valid last 32 bytes in the signature. |
| 108 | + 0..order=that s value; order+1=random bytes */ |
| 109 | + int count_valid = 0, s; |
| 110 | + for (s = 0; s <= EXHAUSTIVE_TEST_ORDER + 1; ++s) { |
| 111 | + int expect_valid, valid; |
| 112 | + if (s <= EXHAUSTIVE_TEST_ORDER) { |
| 113 | + secp256k1_scalar s_s; |
| 114 | + secp256k1_scalar_set_int(&s_s, s); |
| 115 | + secp256k1_scalar_get_b32(sig64 + 32, &s_s); |
| 116 | + expect_valid = actual_k != -1 && s != EXHAUSTIVE_TEST_ORDER && |
| 117 | + (s_s == (actual_k + actual_d * e) % EXHAUSTIVE_TEST_ORDER); |
| 118 | + } else { |
| 119 | + secp256k1_rand256(sig64 + 32); |
| 120 | + expect_valid = 0; |
| 121 | + } |
| 122 | + valid = secp256k1_schnorrsig_verify(ctx, sig64, msg32, &pubkeys[d - 1]); |
| 123 | + CHECK(valid == expect_valid); |
| 124 | + count_valid += valid; |
| 125 | + } |
| 126 | + /* Exactly one s value must verify, unless R is illegal. */ |
| 127 | + CHECK(count_valid == (actual_k != -1)); |
| 128 | + /* Don't retry other messages that result in the same challenge. */ |
| 129 | + e_done[e] = 1; |
| 130 | + ++e_count_done; |
| 131 | + } |
| 132 | + } |
| 133 | + } |
| 134 | + } |
| 135 | +} |
| 136 | + |
| 137 | +static void test_exhaustive_schnorrsig_sign(const secp256k1_context *ctx, unsigned char (*xonly_pubkey_bytes)[32], const secp256k1_keypair* keypairs, const int* parities) { |
| 138 | + int d, k; |
| 139 | + uint64_t iter = 0; |
| 140 | + /* Loop over keys. */ |
| 141 | + for (d = 1; d < EXHAUSTIVE_TEST_ORDER; ++d) { |
| 142 | + int actual_d = d; |
| 143 | + if (parities[d - 1]) actual_d = EXHAUSTIVE_TEST_ORDER - d; |
| 144 | + /* Loop over nonces. */ |
| 145 | + for (k = 1; k < EXHAUSTIVE_TEST_ORDER; ++k) { |
| 146 | + int e_done[EXHAUSTIVE_TEST_ORDER] = {0}; |
| 147 | + int e_count_done = 0; |
| 148 | + unsigned char msg32[32]; |
| 149 | + unsigned char sig64[64]; |
| 150 | + int actual_k = k; |
| 151 | + if (skip_section(&iter)) continue; |
| 152 | + if (parities[k - 1]) actual_k = EXHAUSTIVE_TEST_ORDER - k; |
| 153 | + /* Generate random messages until all challenges have been tried. */ |
| 154 | + while (e_count_done < EXHAUSTIVE_TEST_ORDER) { |
| 155 | + secp256k1_scalar e; |
| 156 | + secp256k1_rand256(msg32); |
| 157 | + secp256k1_schnorrsig_challenge(&e, xonly_pubkey_bytes[k - 1], msg32, xonly_pubkey_bytes[d - 1]); |
| 158 | + /* Only do work if we hit a challenge we haven't tried before. */ |
| 159 | + if (!e_done[e]) { |
| 160 | + secp256k1_scalar expected_s = (actual_k + e * actual_d) % EXHAUSTIVE_TEST_ORDER; |
| 161 | + unsigned char expected_s_bytes[32]; |
| 162 | + secp256k1_scalar_get_b32(expected_s_bytes, &expected_s); |
| 163 | + /* Invoke the real function to construct a signature. */ |
| 164 | + CHECK(secp256k1_schnorrsig_sign(ctx, sig64, msg32, &keypairs[d - 1], secp256k1_hardened_nonce_function_smallint, &k)); |
| 165 | + /* The first 32 bytes must match the xonly pubkey for the specified k. */ |
| 166 | + CHECK(memcmp(sig64, xonly_pubkey_bytes[k - 1], 32) == 0); |
| 167 | + /* The last 32 bytes must match the expected s value. */ |
| 168 | + CHECK(memcmp(sig64 + 32, expected_s_bytes, 32) == 0); |
| 169 | + /* Don't retry other messages that result in the same challenge. */ |
| 170 | + e_done[e] = 1; |
| 171 | + ++e_count_done; |
| 172 | + } |
| 173 | + } |
| 174 | + } |
| 175 | + } |
| 176 | +} |
| 177 | + |
| 178 | +static void test_exhaustive_schnorrsig(const secp256k1_context *ctx) { |
| 179 | + secp256k1_keypair keypair[EXHAUSTIVE_TEST_ORDER - 1]; |
| 180 | + secp256k1_xonly_pubkey xonly_pubkey[EXHAUSTIVE_TEST_ORDER - 1]; |
| 181 | + int parity[EXHAUSTIVE_TEST_ORDER - 1]; |
| 182 | + unsigned char xonly_pubkey_bytes[EXHAUSTIVE_TEST_ORDER - 1][32]; |
| 183 | + unsigned i; |
| 184 | + |
| 185 | + /* Verify that all invalid_pubkey_bytes are actually invalid. */ |
| 186 | + for (i = 0; i < NUM_INVALID_KEYS; ++i) { |
| 187 | + secp256k1_xonly_pubkey pk; |
| 188 | + CHECK(!secp256k1_xonly_pubkey_parse(ctx, &pk, invalid_pubkey_bytes[i])); |
| 189 | + } |
| 190 | + |
| 191 | + /* Construct keypairs and xonly-pubkeys for the entire group. */ |
| 192 | + for (i = 1; i < EXHAUSTIVE_TEST_ORDER; ++i) { |
| 193 | + secp256k1_scalar scalar_i; |
| 194 | + unsigned char buf[32]; |
| 195 | + secp256k1_scalar_set_int(&scalar_i, i); |
| 196 | + secp256k1_scalar_get_b32(buf, &scalar_i); |
| 197 | + CHECK(secp256k1_keypair_create(ctx, &keypair[i - 1], buf)); |
| 198 | + CHECK(secp256k1_keypair_xonly_pub(ctx, &xonly_pubkey[i - 1], &parity[i - 1], &keypair[i - 1])); |
| 199 | + CHECK(secp256k1_xonly_pubkey_serialize(ctx, xonly_pubkey_bytes[i - 1], &xonly_pubkey[i - 1])); |
| 200 | + } |
| 201 | + |
| 202 | + test_exhaustive_schnorrsig_sign(ctx, xonly_pubkey_bytes, keypair, parity); |
| 203 | + test_exhaustive_schnorrsig_verify(ctx, xonly_pubkey, xonly_pubkey_bytes, parity); |
| 204 | +} |
| 205 | + |
| 206 | +#endif |
0 commit comments