|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +# |
| 3 | +# || ____ _ __ |
| 4 | +# +------+ / __ )(_) /_______________ _____ ___ |
| 5 | +# | 0xBC | / __ / / __/ ___/ ___/ __ `/_ / / _ \ |
| 6 | +# +------+ / /_/ / / /_/ /__/ / / /_/ / / /_/ __/ |
| 7 | +# || || /_____/_/\__/\___/_/ \__,_/ /___/\___/ |
| 8 | +# |
| 9 | +# Copyright (C) 2025 Bitcraze AB |
| 10 | +# |
| 11 | +# This program is free software; you can redistribute it and/or |
| 12 | +# modify it under the terms of the GNU General Public License |
| 13 | +# as published by the Free Software Foundation; either version 2 |
| 14 | +# of the License, or (at your option) any later version. |
| 15 | +# |
| 16 | +# This program is distributed in the hope that it will be useful, |
| 17 | +# but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 18 | +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 19 | +# GNU General Public License for more details. |
| 20 | +# You should have received a copy of the GNU General Public License |
| 21 | +# along with this program. If not, see <https://www.gnu.org/licenses/>. |
| 22 | +""" |
| 23 | +Simple script for visualizing the Ligithouse positioning system's configuration |
| 24 | +using matplotlib. Each base station is represented by a local coordinate frame, while |
| 25 | +each one's coverage is represented by 2 circular sectors; a horizontal and a vertical one. |
| 26 | +Notice that the base station coordinate frame is defined as: |
| 27 | + - X-axis pointing forward through the glass |
| 28 | + - Y-axis pointing right, when the base station is seen from the front. |
| 29 | + - Z-axis pointing up |
| 30 | +
|
| 31 | +To run the script, just change the path to your .yaml file. |
| 32 | +""" |
| 33 | +import matplotlib.pyplot as plt |
| 34 | +import numpy as np |
| 35 | +import yaml |
| 36 | + |
| 37 | +config_file = 'lighthouse.yaml' # Add the path to your .yaml file |
| 38 | + |
| 39 | +Range = 5 # Range of each base station in meters |
| 40 | +FoV_h = 150 # Horizontal Field of View in degrees |
| 41 | +FoV_v = 110 # Vertical Field of View in degrees |
| 42 | + |
| 43 | + |
| 44 | +def draw_coordinate_frame(ax, P, R, label='', length=0.5, is_bs=False): |
| 45 | + """Draw a coordinate frame at position t with orientation R.""" |
| 46 | + x_axis = R @ np.array([length, 0, 0]) |
| 47 | + y_axis = R @ np.array([0, length, 0]) |
| 48 | + z_axis = R @ np.array([0, 0, length]) |
| 49 | + |
| 50 | + ax.quiver(P[0], P[1], P[2], x_axis[0], x_axis[1], x_axis[2], color='r', linewidth=2) |
| 51 | + ax.quiver(P[0], P[1], P[2], y_axis[0], y_axis[1], y_axis[2], color='g', linewidth=2) |
| 52 | + ax.quiver(P[0], P[1], P[2], z_axis[0], z_axis[1], z_axis[2], color='b', linewidth=2) |
| 53 | + if is_bs: |
| 54 | + ax.scatter(P[0], P[1], P[2], s=50, color='black') |
| 55 | + ax.text(P[0], P[1], P[2], label, fontsize=10, color='black') |
| 56 | + |
| 57 | + |
| 58 | +def draw_horizontal_sector(ax, P, R, radius=Range, angle_deg=FoV_h, color='r', alpha=0.3, n_points=50): |
| 59 | + """ |
| 60 | + Draw a circular sector centered at the origin of the local coordinate frame,lying in |
| 61 | + the local XY-plane, so that its central axis is aligned with the positive X-axis. |
| 62 | + """ |
| 63 | + # Angle range (centered on X-axis) |
| 64 | + half_angle = np.deg2rad(angle_deg / 2) |
| 65 | + thetas = np.linspace(-half_angle, half_angle, n_points) |
| 66 | + |
| 67 | + # Circle points in local XY-plane |
| 68 | + x_local = radius * np.cos(thetas) |
| 69 | + y_local = radius * np.sin(thetas) |
| 70 | + z_local = np.zeros_like(thetas) |
| 71 | + |
| 72 | + # Stack the coordinates into a 3xN matix |
| 73 | + pts_local = np.vstack([x_local, y_local, z_local]) |
| 74 | + |
| 75 | + # Transfer the points to the global frame, creating a 3xN matrix |
| 76 | + pts_global = R @ pts_local + P.reshape(3, 1) |
| 77 | + |
| 78 | + # Close the sector by adding the center point at the start and end |
| 79 | + X = np.concatenate(([P[0]], pts_global[0, :], [P[0]])) |
| 80 | + Y = np.concatenate(([P[1]], pts_global[1, :], [P[1]])) |
| 81 | + Z = np.concatenate(([P[2]], pts_global[2, :], [P[2]])) |
| 82 | + |
| 83 | + # Plot filled sector |
| 84 | + ax.plot_trisurf(X, Y, Z, color=color, alpha=alpha, linewidth=0) |
| 85 | + |
| 86 | + |
| 87 | +def draw_vertical_sector(ax, P, R, radius=Range, angle_deg=FoV_v, color='r', alpha=0.3, n_points=50): |
| 88 | + """ |
| 89 | + Draw a circular sector centered at the origin of the local coordinate frame,lying in |
| 90 | + the local XZ-plane, so that its central axis is aligned with the positive X-axis. |
| 91 | + """ |
| 92 | + # Angle range (centered on X-axis) |
| 93 | + half_angle = np.deg2rad(angle_deg / 2) |
| 94 | + thetas = np.linspace(-half_angle, half_angle, n_points) |
| 95 | + |
| 96 | + # Circle points in local XZ-plane |
| 97 | + x_local = radius * np.cos(thetas) |
| 98 | + y_local = np.zeros_like(thetas) |
| 99 | + z_local = radius * np.sin(thetas) |
| 100 | + |
| 101 | + # Stack the coordinates into a 3xN matix |
| 102 | + pts_local = np.vstack([x_local, y_local, z_local]) |
| 103 | + |
| 104 | + # Transfer the points to the global frame, creating a 3xN matrix |
| 105 | + pts_global = R @ pts_local + P.reshape(3, 1) |
| 106 | + |
| 107 | + # Close the sector by adding the center point at the start and end |
| 108 | + X = np.concatenate(([P[0]], pts_global[0, :], [P[0]])) |
| 109 | + Y = np.concatenate(([P[1]], pts_global[1, :], [P[1]])) |
| 110 | + Z = np.concatenate(([P[2]], pts_global[2, :], [P[2]])) |
| 111 | + |
| 112 | + # Plot filled sector |
| 113 | + ax.plot_trisurf(X, Y, Z, color=color, alpha=alpha, linewidth=0) |
| 114 | + |
| 115 | + |
| 116 | +if __name__ == '__main__': |
| 117 | + # Load the .yamnl file |
| 118 | + with open(config_file, 'r') as f: |
| 119 | + data = yaml.safe_load(f) |
| 120 | + geos = data['geos'] |
| 121 | + |
| 122 | + fig = plt.figure() |
| 123 | + ax = fig.add_subplot(111, projection='3d') |
| 124 | + |
| 125 | + # Draw global frame |
| 126 | + draw_coordinate_frame(ax, np.zeros(3), np.eye(3), label='Global', length=1.0) |
| 127 | + |
| 128 | + # Draw local frames + sectors |
| 129 | + for key, geo in geos.items(): |
| 130 | + origin = np.array(geo['origin']) |
| 131 | + rotation = np.array(geo['rotation']) |
| 132 | + draw_coordinate_frame(ax, origin, rotation, label=f'BS {key+1}', length=0.5, is_bs=True) |
| 133 | + |
| 134 | + # Local XY-plane sector |
| 135 | + draw_horizontal_sector(ax, origin, rotation, radius=Range, angle_deg=FoV_h, color='red', alpha=0.15) |
| 136 | + |
| 137 | + # Local YZ-plane sector |
| 138 | + draw_vertical_sector(ax, origin, rotation, radius=Range, angle_deg=FoV_v, color='red', alpha=0.15) |
| 139 | + |
| 140 | + ax.set_xlabel('X') |
| 141 | + ax.set_ylabel('Y') |
| 142 | + ax.set_zlabel('Z') |
| 143 | + ax.set_title('Lighthouse Visualization') |
| 144 | + |
| 145 | + # Set equal aspect ratio |
| 146 | + all_points = [np.array(geo['origin']) for geo in geos.values()] |
| 147 | + all_points.append(np.zeros(3)) |
| 148 | + all_points = np.array(all_points) |
| 149 | + max_range = np.ptp(all_points, axis=0).max() |
| 150 | + mid = all_points.mean(axis=0) |
| 151 | + ax.set_xlim(mid[0] - max_range/2, mid[0] + max_range/2) |
| 152 | + ax.set_ylim(mid[1] - max_range/2, mid[1] + max_range/2) |
| 153 | + ax.set_zlim(mid[2] - max_range/2, mid[2] + max_range/2) |
| 154 | + |
| 155 | + plt.show() |
0 commit comments