@@ -139,3 +139,67 @@ stationary at the initial jump location. Left state
139
139
:math: `\left (\rho _L, u_L, p_L\right ) = \left (1 , -19.59745 ,
140
140
1000.0 \right )` Right state :math: `\left (\rho _R, u_R, p_R\right ) =
141
141
\left (1 , -19.59745 , 0.01 \right )`. Result at time :math: `t = 0.03 `.
142
+
143
+ Drift wave
144
+ ----------
145
+
146
+ ``tests/integrated/drift-wave ``
147
+
148
+ This calculates the growth rate and frequency of a resistive drift
149
+ wave with finite electron mass.
150
+
151
+ The equations solved are:
152
+
153
+ .. math ::
154
+
155
+ \begin {aligned}
156
+ \frac {\partial n_i}{\partial t} =& -\nabla\cdot \left (n_i\mathbf {v}_{E\times B}\right ) \\
157
+ n_e =& n_i \\
158
+ \frac {\partial }{\partial t}\nabla\cdot \left (\frac {n_0 m_i}{B^2 }\nabla _\perp\phi \right ) =& \nabla _{||}J_{||} = -\nabla _{||}\left (en_ev_{||e}\right ) \\
159
+ \frac {\partial }{\partial t}\left (m_en_ev_{||e}\right ) =& -\nabla\cdot \left (m_en_ev_{||e} \mathbf {b}v_{||e}\right ) + en_e\partial _{||}\phi - \partial _{||}p_e - 0.51 \nu _{ei}n_im_ev_{||e}
160
+ \end {aligned}
161
+
162
+ Linearising around a stationary background with constant density :math: `n_0 ` and temperature :math: `T_0 `,
163
+ using :math: `\frac {\partial }{\partial t}\rightarrow -i\omega ` gives:
164
+
165
+ .. math ::
166
+
167
+ \begin {aligned}
168
+ \tilde {n} =& \frac {k_\perp }{\omega }\frac {n_0 }{BL_n}\tilde {\phi } \\
169
+ \tilde {\phi } =& -\frac {k_{||}}{\omega k_\perp ^2 }\frac {eB^2 }{m_i}\tilde {v_{||e}} \\
170
+ \omega m_e \tilde {v_{||e}} =& -ek_{||}\tilde {\phi } + ek_{||}\frac {T_o}{n_0 }\tilde {n} - i0.51 \nu _{ei}m_e\tilde {v_{||e}}
171
+ \end {aligned}
172
+
173
+
174
+ where the radial density length scale coming from the radial
175
+ :math: `E\times B` advection of density is defined as
176
+
177
+ .. math ::
178
+
179
+ \frac {1 }{L_n} \equiv \frac {1 }{n_0 }\frac {\partial n_0 }{\partial r}
180
+
181
+ Substituting and rearranging gives:
182
+
183
+ .. math ::
184
+
185
+ i\left (\frac {\omega }{\omega *}\right )^3 \frac {\omega _*}{0.51 \nu _{ei}} = \left (\frac {\omega }{\omega _*} - 1 \right )\frac {i\sigma _{||}}{\omega _*} + \left (\frac {\omega }{\omega *}\right )^2
186
+
187
+ or
188
+
189
+ .. math ::
190
+
191
+ \frac {\omega _*}{0.51 \nu _{ei}}\left (\frac {\omega }{\omega _*}\right )^3 + i\left (\frac {\omega }{\omega _*}\right )^2 - \frac {\sigma _{||}}{\omega _*}\left (\frac {\omega }{\omega _*}\right ) + \frac {\sigma _{||}}{\omega _*} = 0
192
+
193
+ where
194
+
195
+ .. math ::
196
+
197
+ \begin {aligned}
198
+ \omega _* =& \frac {k_\perp T_0 }{BL_n} \\
199
+ \sigma _{||} =& \frac {k_{||}^2 }{k_\perp ^2 }\frac {\Omega _i\Omega _e}{0.51 \nu _{ei}} \\
200
+ \Omega _s =& eB / m_s
201
+ \end {aligned}
202
+
203
+ This is a cubic dispersion relation, so we find the three roots (using
204
+ NumPy), and choose the root with the most positive growth rate
205
+ (imaginary component of :math: `\omega `).
0 commit comments