Skip to content

Commit 2c16945

Browse files
committed
add colab links in tutorials REWEIW:NEW
ref:83cf456c69b1848bd51f79a58ed717018ceff68e
1 parent 3a545cb commit 2c16945

32 files changed

+522
-672
lines changed

apply_model/fast_light_gbm_applier.ipynb

+5-3
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,8 @@
66
"source": [
77
"# Save LightGBM model in CatBoost format to use fast CatBoost appliers\n",
88
"\n",
9+
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catboost/tutorials/blob/master/apply_model/fast_light_gbm_applier.ipynb)\n",
10+
"\n",
911
"To save LightGBM in CatBoost format you need to convert LightGBM model to ONNX, and then to convert the model from ONNX to CatBoost.\n",
1012
"+ Save LightGBM model in the ONNX format\n",
1113
"+ Load the ONNX model into CatBoost using the load_model() method\n",
@@ -147,9 +149,9 @@
147149
],
148150
"metadata": {
149151
"kernelspec": {
150-
"display_name": "mypy37",
152+
"display_name": "Python 3",
151153
"language": "python",
152-
"name": "mypy37"
154+
"name": "python3"
153155
},
154156
"language_info": {
155157
"codemirror_mode": {
@@ -161,7 +163,7 @@
161163
"name": "python",
162164
"nbconvert_exporter": "python",
163165
"pygments_lexer": "ipython3",
164-
"version": "3.6.7"
166+
"version": "3.7.4"
165167
}
166168
},
167169
"nbformat": 4,

classification/classification_tutorial.ipynb

+3-1
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,8 @@
1111
"cell_type": "markdown",
1212
"metadata": {},
1313
"source": [
14+
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catboost/tutorials/blob/master/classification/classification_tutorial.ipynb)\n",
15+
"\n",
1416
"In this tutorial we will use dataset Amazon Employee Access Challenge from [Kaggle](https://www.kaggle.com) competition for our experiments. Data can be downloaded [here](https://www.kaggle.com/c/amazon-employee-access-challenge/data)."
1517
]
1618
},
@@ -28665,7 +28667,7 @@
2866528667
"name": "python",
2866628668
"nbconvert_exporter": "python",
2866728669
"pygments_lexer": "ipython3",
28668-
"version": "3.7.3"
28670+
"version": "3.7.4"
2866928671
},
2867028672
"widgets": {
2867128673
"state": {

classification/classification_with_parameter_tuning_tutorial.ipynb

+7-5
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,8 @@
66
"source": [
77
"# Simple classification example with missing feature handling and parameter tuning\n",
88
"\n",
9+
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catboost/tutorials/blob/master/classification/classification_with_parameter_tuning_tutorial.ipynb)\n",
10+
"\n",
911
"This tutorial will show you how to use CatBoost to train binary classifier for data with missing feature and how to do hyper-parameter tuning using Hyperopt framework.\n",
1012
"\n",
1113
"Gaps in data may be a challenge to handle correctly, especially when they appear in categorical features, this tutorial will also give some advices how to handle them during model application."
@@ -699,21 +701,21 @@
699701
],
700702
"metadata": {
701703
"kernelspec": {
702-
"display_name": "Python 2",
704+
"display_name": "Python 3",
703705
"language": "python",
704-
"name": "python2"
706+
"name": "python3"
705707
},
706708
"language_info": {
707709
"codemirror_mode": {
708710
"name": "ipython",
709-
"version": 2
711+
"version": 3
710712
},
711713
"file_extension": ".py",
712714
"mimetype": "text/x-python",
713715
"name": "python",
714716
"nbconvert_exporter": "python",
715-
"pygments_lexer": "ipython2",
716-
"version": "2.7.12"
717+
"pygments_lexer": "ipython3",
718+
"version": "3.7.4"
717719
}
718720
},
719721
"nbformat": 4,

competition_examples/mlbootcamp_v_tutorial.ipynb

+7-5
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,8 @@
1111
"cell_type": "markdown",
1212
"metadata": {},
1313
"source": [
14+
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catboost/tutorials/blob/master/competition_examples/mlbootcamp_v_tutorial.ipynb)\n",
15+
"\n",
1416
"This code shows 7th place solution for competition of forecasting cardiovascular diseases (http://mlbootcamp.ru/round/12/sandbox/)"
1517
]
1618
},
@@ -700,21 +702,21 @@
700702
],
701703
"metadata": {
702704
"kernelspec": {
703-
"display_name": "Python 2",
705+
"display_name": "Python 3",
704706
"language": "python",
705-
"name": "python2"
707+
"name": "python3"
706708
},
707709
"language_info": {
708710
"codemirror_mode": {
709711
"name": "ipython",
710-
"version": 2
712+
"version": 3
711713
},
712714
"file_extension": ".py",
713715
"mimetype": "text/x-python",
714716
"name": "python",
715717
"nbconvert_exporter": "python",
716-
"pygments_lexer": "ipython2",
717-
"version": "2.7.15"
718+
"pygments_lexer": "ipython3",
719+
"version": "3.7.4"
718720
},
719721
"widgets": {
720722
"state": {

competition_examples/quora_w2v.ipynb

+8-6
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,9 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"## Example of using CatBoost on text data with word2vec embedding."
7+
"## Example of using CatBoost on text data with word2vec embedding.\n",
8+
"\n",
9+
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catboost/tutorials/blob/master/competition_examples/quora_w2v.ipynb)"
810
]
911
},
1012
{
@@ -632,21 +634,21 @@
632634
],
633635
"metadata": {
634636
"kernelspec": {
635-
"display_name": "Python 2",
637+
"display_name": "Python 3",
636638
"language": "python",
637-
"name": "python2"
639+
"name": "python3"
638640
},
639641
"language_info": {
640642
"codemirror_mode": {
641643
"name": "ipython",
642-
"version": 2
644+
"version": 3
643645
},
644646
"file_extension": ".py",
645647
"mimetype": "text/x-python",
646648
"name": "python",
647649
"nbconvert_exporter": "python",
648-
"pygments_lexer": "ipython2",
649-
"version": "2.7.15"
650+
"pygments_lexer": "ipython3",
651+
"version": "3.7.4"
650652
}
651653
},
652654
"nbformat": 4,

cross_validation/cv_tutorial.ipynb

+8-1
Original file line numberDiff line numberDiff line change
@@ -7,6 +7,13 @@
77
"# Cross Validation tutorial"
88
]
99
},
10+
{
11+
"cell_type": "markdown",
12+
"metadata": {},
13+
"source": [
14+
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catboost/tutorials/blob/master/cross_validation/cv_tutorial.ipynb)"
15+
]
16+
},
1017
{
1118
"cell_type": "markdown",
1219
"metadata": {},
@@ -8512,7 +8519,7 @@
85128519
"name": "python",
85138520
"nbconvert_exporter": "python",
85148521
"pygments_lexer": "ipython3",
8515-
"version": "3.5.2"
8522+
"version": "3.7.4"
85168523
}
85178524
},
85188525
"nbformat": 4,

custom_loss/custom_loss_and_metric_tutorial.ipynb

+8-1
Original file line numberDiff line numberDiff line change
@@ -7,6 +7,13 @@
77
"# $$User\\ Defined\\ Metrics\\ Tutorial$$"
88
]
99
},
10+
{
11+
"cell_type": "markdown",
12+
"metadata": {},
13+
"source": [
14+
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catboost/tutorials/blob/master/custom_loss/custom_loss_and_metric_tutorial.ipynb)"
15+
]
16+
},
1017
{
1118
"cell_type": "markdown",
1219
"metadata": {},
@@ -707,7 +714,7 @@
707714
"name": "python",
708715
"nbconvert_exporter": "python",
709716
"pygments_lexer": "ipython3",
710-
"version": "3.7.3"
717+
"version": "3.7.4"
711718
}
712719
},
713720
"nbformat": 4,

events/2019_10_30_odsc_west.ipynb

+2
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,8 @@
1111
"cell_type": "markdown",
1212
"metadata": {},
1313
"source": [
14+
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catboost/tutorials/blob/master/events/2019_10_30_odsc_west.ipynb)\n",
15+
"\n",
1416
"In this tutorial we will use dataset Amazon Employee Access Challenge from [Kaggle](https://www.kaggle.com) competition for our experiments. Data can be downloaded [here](https://www.kaggle.com/c/amazon-employee-access-challenge/data)."
1517
]
1618
},

events/2019_11_07_intel_hands_on.ipynb

+2
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,8 @@
1111
"cell_type": "markdown",
1212
"metadata": {},
1313
"source": [
14+
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catboost/tutorials/blob/master/events/2019_11_07_intel_hands_on.ipynb)\n",
15+
"\n",
1416
"In this tutorial we will use dataset Amazon Employee Access Challenge from [Kaggle](https://www.kaggle.com) competition for our experiments. Data can be downloaded [here](https://www.kaggle.com/c/amazon-employee-access-challenge/data)."
1517
]
1618
},

events/datastart_moscow_apr_27_2019.ipynb

+3-1
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,8 @@
1111
"cell_type": "markdown",
1212
"metadata": {},
1313
"source": [
14+
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catboost/tutorials/blob/master/events/datastart_moscow_apr_27_2019.ipynb)\n",
15+
"\n",
1416
"In this tutorial we will use dataset Amazon Employee Access Challenge from [Kaggle](https://www.kaggle.com) competition for our experiments. Data can be downloaded [here](https://www.kaggle.com/c/amazon-employee-access-challenge/data)."
1517
]
1618
},
@@ -21911,7 +21913,7 @@
2191121913
"name": "python",
2191221914
"nbconvert_exporter": "python",
2191321915
"pygments_lexer": "ipython3",
21914-
"version": "3.6.7"
21916+
"version": "3.7.4"
2191521917
},
2191621918
"widgets": {
2191721919
"state": {

events/intel_hands_on_moscow_oct_11_2019.ipynb

+3-1
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,8 @@
1111
"cell_type": "markdown",
1212
"metadata": {},
1313
"source": [
14+
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catboost/tutorials/blob/master/events/intel_hands_on_moscow_oct_11_2019.ipynb)\n",
15+
"\n",
1416
"In this tutorial we will use dataset Amazon Employee Access Challenge from [Kaggle](https://www.kaggle.com) competition for our experiments. Data can be downloaded [here](https://www.kaggle.com/c/amazon-employee-access-challenge/data)."
1517
]
1618
},
@@ -933,7 +935,7 @@
933935
"name": "python",
934936
"nbconvert_exporter": "python",
935937
"pygments_lexer": "ipython3",
936-
"version": "3.7.3"
938+
"version": "3.7.4"
937939
},
938940
"widgets": {
939941
"state": {

events/pydata_la_oct_21_2018.ipynb

+3-1
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,8 @@
1111
"cell_type": "markdown",
1212
"metadata": {},
1313
"source": [
14+
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catboost/tutorials/blob/master/events/pydata_la_oct_21_2018.ipynb)\n",
15+
"\n",
1416
"In this tutorial we will use dataset Amazon Employee Access Challenge from [Kaggle](https://www.kaggle.com) competition for our experiments. Data can be downloaded [here](https://www.kaggle.com/c/amazon-employee-access-challenge/data)."
1517
]
1618
},
@@ -35221,7 +35223,7 @@
3522135223
"name": "python",
3522235224
"nbconvert_exporter": "python",
3522335225
"pygments_lexer": "ipython3",
35224-
"version": "3.7.3"
35226+
"version": "3.7.4"
3522535227
},
3522635228
"widgets": {
3522735229
"state": {

events/pydata_moscow_oct_13_2018.ipynb

+3-1
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,8 @@
1111
"cell_type": "markdown",
1212
"metadata": {},
1313
"source": [
14+
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catboost/tutorials/blob/master/events/pydata_moscow_oct_13_2018.ipynb)\n",
15+
"\n",
1416
"In this tutorial we will use dataset Amazon Employee Access Challenge from [Kaggle](https://www.kaggle.com) competition for our experiments. Data can be downloaded [here](https://www.kaggle.com/c/amazon-employee-access-challenge/data)."
1517
]
1618
},
@@ -28671,7 +28673,7 @@
2867128673
"name": "python",
2867228674
"nbconvert_exporter": "python",
2867328675
"pygments_lexer": "ipython3",
28674-
"version": "3.6.7"
28676+
"version": "3.7.4"
2867528677
},
2867628678
"widgets": {
2867728679
"state": {

events/pydata_nyc_oct_19_2018.ipynb

+3-1
Original file line numberDiff line numberDiff line change
@@ -11,6 +11,8 @@
1111
"cell_type": "markdown",
1212
"metadata": {},
1313
"source": [
14+
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catboost/tutorials/blob/master/events/pydata_nyc_oct_19_2018.ipynb)\n",
15+
"\n",
1416
"In this tutorial we will use dataset Amazon Employee Access Challenge from [Kaggle](https://www.kaggle.com) competition for our experiments. Data can be downloaded [here](https://www.kaggle.com/c/amazon-employee-access-challenge/data)."
1517
]
1618
},
@@ -35843,7 +35845,7 @@
3584335845
"name": "python",
3584435846
"nbconvert_exporter": "python",
3584535847
"pygments_lexer": "ipython3",
35846-
"version": "3.7.3"
35848+
"version": "3.7.4"
3584735849
},
3584835850
"widgets": {
3584935851
"state": {

feature_selection/eval_tutorial.ipynb

+12-5
Original file line numberDiff line numberDiff line change
@@ -7,6 +7,13 @@
77
"# CatBoost feature selection tutorial"
88
]
99
},
10+
{
11+
"cell_type": "markdown",
12+
"metadata": {},
13+
"source": [
14+
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/catboost/tutorials/blob/master/feature_selection/eval_tutorial.ipynb)"
15+
]
16+
},
1017
{
1118
"cell_type": "markdown",
1219
"metadata": {},
@@ -98219,21 +98226,21 @@
9821998226
],
9822098227
"metadata": {
9822198228
"kernelspec": {
98222-
"display_name": "Python 2",
98229+
"display_name": "Python 3",
9822398230
"language": "python",
98224-
"name": "python2"
98231+
"name": "python3"
9822598232
},
9822698233
"language_info": {
9822798234
"codemirror_mode": {
9822898235
"name": "ipython",
98229-
"version": 2
98236+
"version": 3
9823098237
},
9823198238
"file_extension": ".py",
9823298239
"mimetype": "text/x-python",
9823398240
"name": "python",
9823498241
"nbconvert_exporter": "python",
98235-
"pygments_lexer": "ipython2",
98236-
"version": "2.7.14"
98242+
"pygments_lexer": "ipython3",
98243+
"version": "3.7.4"
9823798244
}
9823898245
},
9823998246
"nbformat": 4,

0 commit comments

Comments
 (0)