You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+1-1Lines changed: 1 addition & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -9,7 +9,7 @@ Like in tree-based algorithms, the data are split according to simple decision r
9
9
10
10
**Linear Forests** generalize the well known Random Forests by combining Linear Models with the same Random Forests. The key idea is to use the strength of Linear Models to improve the nonparametric learning ability of tree-based algorithms. Firstly, a Linear Model is fitted on the whole dataset, then a Random Forest is trained on the same dataset but using the residuals of the previous steps as target. The final predictions are the sum of the raw linear predictions and the residuals modeled by the Random Forest.
11
11
12
-
**Linear Boosting** is a two stage learning process. Firstly, a linear model is trained on the initial dataset to obtains predictions. Secondly, the residuals of the previous step are modeled with a decision tree using all the available features. The tree identifies the path leading to highest error (i.e. the worst leaf). The leaf contributing to the error the most is used to generate a new binary feature to be used in the first stage. The iterations continue until a certain stopping criterion is met.
12
+
**Linear Boosting** is a two stage learning process. Firstly, a linear model is trained on the initial dataset to obtain predictions. Secondly, the residuals of the previous step are modeled with a decision tree using all the available features. The tree identifies the path leading to highest error (i.e. the worst leaf). The leaf contributing to the error the most is used to generate a new binary feature to be used in the first stage. The iterations continue until a certain stopping criterion is met.
13
13
14
14
**linear-tree is developed to be fully integrable with scikit-learn**. ```LinearTreeRegressor``` and ```LinearTreeClassifier``` are provided as scikit-learn _BaseEstimator_ to build a decision tree using linear estimators. ```LinearForestRegressor``` and ```LinearForestClassifier``` use the _RandomForest_ from sklearn to model residuals. ```LinearBoostRegressor``` and ```LinearBoostClassifier``` are available also as _TransformerMixin_ in order to be integrated, in any pipeline, also for automated features engineering. All the models available in [sklearn.linear_model](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model) can be used as base learner.
0 commit comments