Skip to content

Commit 3d99d9a

Browse files
author
Karandeep Grover
committed
CLN: changed old links to new updated links
1 parent a36fb3c commit 3d99d9a

File tree

7 files changed

+13
-13
lines changed

7 files changed

+13
-13
lines changed

10_gpu_benchmarking/Exercise/exercise_fashion_mnist_gpu_benchmarking.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -252,7 +252,7 @@
252252
"cell_type": "markdown",
253253
"metadata": {},
254254
"source": [
255-
"[Click me to check solution for this exercise](https://github.com/codebasics/py/blob/master/DeepLearningML/10_gpu_benchmarking/Exercise/exercise_solution.ipynb)"
255+
"[Click me to check solution for this exercise](https://github.com/codebasics/deep-learning-keras-tf-tutorial/blob/main/10_gpu_benchmarking/Exercise/exercise_solution.ipynb)"
256256
]
257257
}
258258
],
@@ -277,4 +277,4 @@
277277
},
278278
"nbformat": 4,
279279
"nbformat_minor": 4
280-
}
280+
}

14_imbalanced/handling_imbalanced_data_exercise.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -1,12 +1,12 @@
11
#### Exercise: Handling imbalanced data in machine learning
22

3-
1. Use [this notebook](https://github.com/codebasics/py/blob/master/DeepLearningML/13_imbalanced/handling_imbalanced_data.ipynb) but handle imbalanced data using simple logistic regression from skelarn library. The original notebook using neural network but you need to use sklearn logistic regression or any other classification model and improve the f1-score of minority class using,
3+
1. Use [this notebook](https://github.com/codebasics/deep-learning-keras-tf-tutorial/blob/main/13_imbalanced/handling_imbalanced_data.ipynb) but handle imbalanced data using simple logistic regression from skelarn library. The original notebook using neural network but you need to use sklearn logistic regression or any other classification model and improve the f1-score of minority class using,
44
1. Undersampling
55
1. Oversampling: duplicate copy
66
1. OVersampling: SMOT
77
1. Ensemble
88

9-
[Solution](https://github.com/codebasics/py/blob/master/DeepLearningML/14_imbalanced/handling_imbalanced_data_exercise_solution_telecom_churn.ipynb)
9+
[Solution](https://github.com/codebasics/deep-learning-keras-tf-tutorial/blob/main/14_imbalanced/handling_imbalanced_data_exercise_solution_telecom_churn.ipynb)
1010

1111
2. Take this dataset for bank customer churn prediction : https://www.kaggle.com/barelydedicated/bank-customer-churn-modeling
1212
1. Build a deep learning model to predict churn rate at bank

16_cnn_cifar10_small_image_classification/cnn_cifar10_dataset.ipynb

+3-3
Original file line numberDiff line numberDiff line change
@@ -642,9 +642,9 @@
642642
"metadata": {},
643643
"source": [
644644
"Use CNN to do handwritten digits classification using MNIST dataset. You can use this notebook as a reference:\n",
645-
"https://github.com/codebasics/py/blob/master/DeepLearningML/1_digits_recognition/digits_recognition_neural_network.ipynb\n",
645+
"https://github.com/codebasics/deep-learning-keras-tf-tutorial/blob/main/1_digits_recognition/digits_recognition_neural_network.ipynb\n",
646646
"\n",
647-
"Above we used ANN for digits classification. You need to modify this code to use CNN instead. Check how accuracy improves fast with CNN and figure out how CNN can be a better choice for doing image classification compared to ANN. Once you have worked on this problem on your own, you can check my solution by clicking on this link: [Solution](https://github.com/codebasics/py/blob/master/DeepLearningML/16_cnn_cifar10_small_image_classification/cnn_mnist_exercise_solution.ipynb)"
647+
"Above we used ANN for digits classification. You need to modify this code to use CNN instead. Check how accuracy improves fast with CNN and figure out how CNN can be a better choice for doing image classification compared to ANN. Once you have worked on this problem on your own, you can check my solution by clicking on this link: [Solution](https://github.com/codebasics/deep-learning-keras-tf-tutorial/blob/main/16_cnn_cifar10_small_image_classification/cnn_mnist_exercise_solution.ipynb)"
648648
]
649649
}
650650
],
@@ -669,4 +669,4 @@
669669
},
670670
"nbformat": 4,
671671
"nbformat_minor": 4
672-
}
672+
}

3_derivatives/derivatives_exercise.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ To find answers please refer to derivatives rules at https://www.mathsisfun.com/
77

88
![](derivatives_question.jpg)
99

10-
[Click me for solution of above problems](https://github.com/codebasics/py/tree/master/DeepLearningML/3_derivatives/derivatives_exercise_solution.md)
10+
[Click me for solution of above problems](https://github.com/codebasics/deep-learning-keras-tf-tutorial/blob/main/3_derivatives/derivatives_exercise_solution.md)
1111

1212
##### Practice more derivative questions by clicking on link below,
1313
[Derivative Exercise](https://www.mathopolis.com/questions/q.html?id=6800&t=mif&qs=6800_6801_6802_6803_6804_6805_6806_6807_6808_6809_6810_6811_6812&site=1&ref=2f63616c63756c75732f64657269766174697665732d72756c65732e68746d6c&title=446572697661746976652052756c6573)

4_matrix_math/4_matrix_math.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@
77

88
![](flowers.jpg)
99

10-
[Click here for solution of 1 and 2](https://github.com/codebasics/py/tree/master/DeepLearningML/4_matrix_math/4_matrix_math_exercise_solution.ipynb)
10+
[Click here for solution of 1 and 2](https://github.com/codebasics/deep-learning-keras-tf-tutorial/blob/main/4_matrix_math/4_matrix_math_exercise_solution.ipynb)
1111

1212
3. Here is some matrix exercise from mathisfun.com. Please click on a link below and do the exercise.
1313

5_loss/5_loss_or_cost_function.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -406,7 +406,7 @@
406406
"cell_type": "markdown",
407407
"metadata": {},
408408
"source": [
409-
"[Solution](https://github.com/codebasics/py/tree/master/DeepLearningML/5_loss/loss_function_exercise_solution.ipynb)"
409+
"[Solution](https://github.com/codebasics/deep-learning-keras-tf-tutorial/blob/main/5_loss/loss_function_exercise_solution.ipynb)"
410410
]
411411
}
412412
],
@@ -431,4 +431,4 @@
431431
},
432432
"nbformat": 4,
433433
"nbformat_minor": 4
434-
}
434+
}

8_sgd_vs_gd/gd_and_sgd.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -679,7 +679,7 @@
679679
"cell_type": "markdown",
680680
"metadata": {},
681681
"source": [
682-
"[Solution](https://github.com/codebasics/py/blob/master/DeepLearningML/8_sgd_vs_gd/mini_batch_gd.ipynb)"
682+
"[Solution](https://github.com/codebasics/deep-learning-keras-tf-tutorial/blob/main/8_sgd_vs_gd/mini_batch_gd.ipynb)"
683683
]
684684
}
685685
],
@@ -704,4 +704,4 @@
704704
},
705705
"nbformat": 4,
706706
"nbformat_minor": 4
707-
}
707+
}

0 commit comments

Comments
 (0)