|
| 1 | +## A |
| 2 | + |
| 3 | +容易发现只要存在`RL`字符串即可满足要求,于是只需要判断是否存在,如果不存在的话将`LR`进行反转 |
| 4 | + |
| 5 | +```cpp |
| 6 | +void solve() { |
| 7 | + int n; |
| 8 | + string s; |
| 9 | + cin >> n >> s; |
| 10 | + // 每盏灯左边或者右边有灯 |
| 11 | + //LLLRLRR |
| 12 | + if (n == 1 || count(all(s), 'L') == 0 || count(all(s), 'R') == 0) { |
| 13 | + cout << -1 << "\n"; |
| 14 | + return; |
| 15 | + } |
| 16 | + int idx = 0; |
| 17 | + for (int i = 0; i < n-1; i++) { |
| 18 | + if (s[i] == 'L' && s[i+1] == 'R') { |
| 19 | + idx = i+1; |
| 20 | + break; |
| 21 | + } |
| 22 | + } |
| 23 | + cout << idx << "\n"; |
| 24 | +} |
| 25 | + |
| 26 | +``` |
| 27 | + |
| 28 | +## B |
| 29 | + |
| 30 | +{**a1,a2**,a3...ak}这样的一个序列,容易发现必须满足减去a[i] + a[i+1]之后的和为0,当n=3的时候显然不满足; |
| 31 | + |
| 32 | +当n>3的时候,通过消元发现,a[i] = a[i+2*k],进而,对剩余的元素,进行正负的划分即可,然后可以给他们安一个值,`lcm(a,b)/a`,`lcm(a,b)/b`. |
| 33 | + |
| 34 | +```cpp |
| 35 | +void solve() { |
| 36 | + int n; |
| 37 | + cin >> n; |
| 38 | + if (n == 3) { |
| 39 | + cout << "NO\n"; |
| 40 | + } |
| 41 | + else if (~n&1){ |
| 42 | + cout << "YES\n"; |
| 43 | + for (int i = 1; i <= n; i+=2) { |
| 44 | + cout << 1 << " " << -1 << " "; |
| 45 | + } |
| 46 | + cout << "\n"; |
| 47 | + } |
| 48 | + else { |
| 49 | + cout << "YES\n"; |
| 50 | + ll a = (n-1)/2, b = (n-2)/2; |
| 51 | + cout << lcm(a,b)/a << " "; |
| 52 | + for (int i = 1; i <= n-1; i+=2) { |
| 53 | + cout << -lcm(a,b)/b << " " << lcm(a,b)/a << " "; |
| 54 | + } |
| 55 | + cout << "\n"; |
| 56 | + } |
| 57 | +} |
| 58 | +``` |
| 59 | + |
| 60 | +## C |
| 61 | + |
| 62 | +对于m之前的所有前缀应该满足>=0,对于m之后的所有前缀也是如此。 |
| 63 | + |
| 64 | +于是可以采取从m位置向前保证前缀和< 0的操作,如果不满足的话将原先存在的堆里头最大值变成负数; |
| 65 | + |
| 66 | +往后的操作同理。 实际上就是**反悔堆**的操作 |
| 67 | + |
| 68 | +```cpp |
| 69 | +void solve() { |
| 70 | + int n, m; |
| 71 | + cin >> n >> m; |
| 72 | + vector <ll> a(n+1); |
| 73 | + for (int i = 0; i < n; i++) { |
| 74 | + cin >> a[i+1]; |
| 75 | + } |
| 76 | + ll cur = 0; |
| 77 | + int ans = 0; |
| 78 | + priority_queue<int> q; |
| 79 | + for (int i = m; i >= 2; i--) { |
| 80 | + cur += a[i]; |
| 81 | + q.push(a[i]); |
| 82 | + if (cur > 0) { |
| 83 | + auto u = q.top(); q.pop(); |
| 84 | + cur -= 2 * u; |
| 85 | + ans++; |
| 86 | + } |
| 87 | + } |
| 88 | + priority_queue <int,vector<int>,greater<>> q1; |
| 89 | + cur = 0; |
| 90 | + for (int i = m+1; i <= n; i++) { |
| 91 | + cur += a[i]; |
| 92 | + q1.push(a[i]); |
| 93 | + if (cur < 0) { |
| 94 | + auto u = q1.top(); q1.pop(); |
| 95 | + cur -= 2 * u; |
| 96 | + ans++; |
| 97 | + } |
| 98 | + } |
| 99 | + cout << ans << "\n"; |
| 100 | +} |
| 101 | +``` |
| 102 | + |
0 commit comments