|
| 1 | +> 这个比赛有72个小时,我刚上去看的时候发现还剩下7个小时,就做了一下 |
| 2 | +> 感觉后面还有3道全是数学题,有点做不下去,希望有空能补上 |
| 3 | +
|
| 4 | +### A |
| 5 | +```c++ |
| 6 | +void solve() { |
| 7 | + int n; |
| 8 | + cin >> n; |
| 9 | + while(n--){ |
| 10 | + int a, b; |
| 11 | + cin >> a >> b; |
| 12 | + cout << max(0, a - b) << endl; |
| 13 | + } |
| 14 | +} |
| 15 | + |
| 16 | +``` |
| 17 | + |
| 18 | +### B |
| 19 | +```c++ |
| 20 | +void solve() { |
| 21 | + int n; |
| 22 | + cin >> n; |
| 23 | + while(n--){ |
| 24 | + int a, b; |
| 25 | + cin >> a >> b; |
| 26 | + cout << ((a - 1)/6 + 1) * 1LL * b << endl; |
| 27 | + } |
| 28 | +} |
| 29 | +``` |
| 30 | + |
| 31 | +### C |
| 32 | ++1, +2, +1, +2...这样每2次为一回合会漏掉一个,规律来看就是以2位首项的等差数列 |
| 33 | +```c++ |
| 34 | +void solve() { |
| 35 | + int n; |
| 36 | + cin >> n; |
| 37 | + while(n--){ |
| 38 | + int a, b; |
| 39 | + cin >> a >> b; |
| 40 | + //1 3 4 6 7 9 10 12 |
| 41 | + //2 5 8 11 |
| 42 | + int rest = b - a; |
| 43 | + if(rest < 0 || (rest % 3 == 2)) cout << "NO" << endl; |
| 44 | + else cout << "YES" << endl; |
| 45 | + } |
| 46 | +} |
| 47 | +``` |
| 48 | + |
| 49 | +### D |
| 50 | +模式匹配,主要是看某个串是否完全匹配模式串,如果不能则答案+1 |
| 51 | +```c++ |
| 52 | +void solve() { |
| 53 | + int n; |
| 54 | + cin >> n; |
| 55 | + string a, b; |
| 56 | + cin >> a >> b; |
| 57 | + vector<vector<int>> pos(256); |
| 58 | + for (int i = 0; i < b.size(); i++) pos[b[i] - 'a'].push_back(i); |
| 59 | + int ans = 0; |
| 60 | + for (int i = 0; i < 26; i++) { |
| 61 | + bool ok = 0; |
| 62 | + for (int j: pos[i]) { |
| 63 | + if (a[j] != b[j]) { |
| 64 | + ok = 1; |
| 65 | + break; |
| 66 | + } |
| 67 | + } |
| 68 | + ans += ok; |
| 69 | + } |
| 70 | + cout << ans << endl; |
| 71 | +} |
| 72 | + |
| 73 | +``` |
| 74 | + |
| 75 | +### E |
| 76 | +构造题,事实上更好的构造方法可以将[1,..., N]两段分开,然后交错拼接 |
| 77 | +下面的做法主要是观察到最明显的性质:只有后面为`[1,N]`满足N-1的diff, |
| 78 | +```c++ |
| 79 | +void solve() { |
| 80 | + bitset<100010> st; |
| 81 | + int n; |
| 82 | + cin >> n; |
| 83 | + vector <int> ans(n + 1); |
| 84 | + ans[n] = n, ans[n - 1] = 1; |
| 85 | + st[n] = st[1] = 1; |
| 86 | + for (int i = n - 2; i > 0; i--){ |
| 87 | + int last = ans[i + 1], t; |
| 88 | + if(last + i > 1 && last + i < n && !st[last + i]) st[last + i] = 1, t = last + i; |
| 89 | + else if(last - i > 1 && last - i < n && !st[last - i]) st[last - i] = 1, t = last - i; |
| 90 | + ans[i] = t; |
| 91 | + } |
| 92 | + for (int i = 1; i <= n; i++) { |
| 93 | + cout << ans[i] << " \n"[i == n]; |
| 94 | + } |
| 95 | +} |
| 96 | +``` |
| 97 | +### F |
| 98 | +一点点数学,先找到它们的差值,两者的gcd是有办法达到这个差值的,让次小值达到这个值。然后思考,此时这两个数实际上是倍数关系,能有方案 |
| 99 | +使得他们减去某个值,也达到某个该最大公约数的约数的情况。 |
| 100 | +用O(sqrt(n))的筛法即可得到约数分布情况 |
| 101 | +```c++ |
| 102 | +void solve() { |
| 103 | + int a, b; |
| 104 | + cin >> a >> b; |
| 105 | + int d = abs(a - b); |
| 106 | + int ans = 0; |
| 107 | + for (int i = 1; i <= sqrt(d); i++){ |
| 108 | + if(d % i == 0) { |
| 109 | + ans++; |
| 110 | + if(d != i * i) ans++; |
| 111 | + } |
| 112 | + } |
| 113 | + cout << ans << endl; |
| 114 | +} |
| 115 | +``` |
0 commit comments