|
| 1 | +# [Codeforces Round #842 (Div. 2)](https://codeforces.com/contest/1768) |
| 2 | + |
| 3 | + |
| 4 | + |
| 5 | +## A |
| 6 | + |
| 7 | +观察到 **i! + (i-1)! = (i+1)*(i-1)!**,所以能保证的最大值为`k-1` |
| 8 | + |
| 9 | +```cpp |
| 10 | +void solve() { |
| 11 | + ll k; |
| 12 | + cin >> k; |
| 13 | + //(i-1)!*(i+1) |
| 14 | + //(i^2-1)*(i-2) |
| 15 | + cout << k-1 << "\n"; |
| 16 | +} |
| 17 | + |
| 18 | +``` |
| 19 | + |
| 20 | + |
| 21 | + |
| 22 | +## B |
| 23 | + |
| 24 | +由于该操作会影响顺序,其实我们只需要考虑递增的最长子序列即可 |
| 25 | + |
| 26 | +```cpp |
| 27 | +void solve() { |
| 28 | + int n, k; |
| 29 | + cin >> n >> k; |
| 30 | + vector <int> id(n+1); |
| 31 | + for (int i = 1; i <= n; i++) { |
| 32 | + int x; |
| 33 | + cin >> x; |
| 34 | + id[x] = i; |
| 35 | + } |
| 36 | + int t = 2; |
| 37 | + while (t <= n && id[t] > id[t-1]) t++; |
| 38 | + cout << (n - t + k) / k << "\n"; //注意此处ceil需要写成(n-1+t+k)/k之类的形式来计算 |
| 39 | +} |
| 40 | +``` |
| 41 | + |
| 42 | + |
| 43 | + |
| 44 | +## C |
| 45 | + |
| 46 | +贪心,首先1的话由于特殊性,只能出现最多一次,其他数字可以出现最多两次。 |
| 47 | + |
| 48 | +然后,贪心地先填小的数字,因为先填大的会导致后面的选择变少 |
| 49 | + |
| 50 | +```cpp |
| 51 | +void solve() { |
| 52 | + int n; |
| 53 | + cin >> n; |
| 54 | + vector <int> a(n+1), st(n+1); |
| 55 | + vector <vector<int>> ans(2, vector<int>(n+1)), has(2, vector <int> (n+1, 1)); |
| 56 | + vector <int> pos(2, 1); |
| 57 | + priority_queue <tp,vector<tp>,greater<>> q; |
| 58 | + for (int i = 1; i <= n; i++) { |
| 59 | + cin >> a[i]; |
| 60 | + } |
| 61 | + for (int i = 1; i <= n; i++) { |
| 62 | + st[a[i]]++; |
| 63 | + if (st[a[i]] > 2 || st[1] >= 2) { |
| 64 | + cout << "NO\n"; |
| 65 | + return; |
| 66 | + } |
| 67 | + ans[st[a[i]]-1][i] = a[i]; |
| 68 | + has[st[a[i]]-1][a[i]] = 0; |
| 69 | + q.emplace(a[i], st[a[i]]-1, i); |
| 70 | + } |
| 71 | + // 贪心,每次都填最小的 |
| 72 | + while (q.size()) { |
| 73 | + auto [val, p, id] = q.top(); q.pop(); |
| 74 | + int & x = pos[!p]; |
| 75 | + while (x <= n && !has[!p][x]) x++; |
| 76 | + if (x > val) { |
| 77 | + cout << "NO\n"; |
| 78 | + return; |
| 79 | + } |
| 80 | + ans[!p][id] = x; |
| 81 | + x++; |
| 82 | + } |
| 83 | + cout << "YES\n"; |
| 84 | + for (int i = 0; i < 2; i++) { |
| 85 | + for (int j = 1; j <= n; j++) { |
| 86 | + cout << ans[i][j] << " "; |
| 87 | + } |
| 88 | + cout << "\n"; |
| 89 | + } |
| 90 | +} |
| 91 | +``` |
| 92 | + |
| 93 | +## D |
| 94 | + |
| 95 | +需要观察出以下性质: |
| 96 | + |
| 97 | +1. 满足条件的序列只有n-1个,是从升序排序的序列里头挑出来相邻的两个进行逆序操作 |
| 98 | +2. 将一个打乱的序列恢复成升序排序的操作数为 **n-cycles**,其中 **cycles**为置换环的数目 |
| 99 | +3. 从升序序列变成满足条件的序列,如果相邻点不在一个集合内部的话,则需要额外的操作一次达到逆置;反之如果在一个集合内部的话,则操作数减一 |
| 100 | + |
| 101 | +```cpp |
| 102 | +void solve() { |
| 103 | + int n; |
| 104 | + cin >> n; |
| 105 | + vector <int> id(n + 1), st(n + 1); |
| 106 | + for (int i = 1; i <= n; i++) { |
| 107 | + int x; |
| 108 | + cin >> x; |
| 109 | + id[x] = i; |
| 110 | + } |
| 111 | + int ans = n; |
| 112 | + for (int i = 1; i <= n; i++) { |
| 113 | + if (st[i]) continue; |
| 114 | + int j = i; |
| 115 | + while (!st[j]) { |
| 116 | + st[j] = i; |
| 117 | + j = id[j]; |
| 118 | + } |
| 119 | + ans--; |
| 120 | + } |
| 121 | + for (int i = 2; i <= n; i++) { |
| 122 | + if (st[i] == st[i - 1]) { |
| 123 | + cout << ans - 1 << "\n"; |
| 124 | + return; |
| 125 | + } |
| 126 | + } |
| 127 | + cout << ans + 1 << "\n"; |
| 128 | +} |
| 129 | +``` |
| 130 | + |
| 131 | + |
| 132 | + |
| 133 | + |
| 134 | + |
| 135 | +## 小结 |
| 136 | + |
| 137 | +构造题做得不够,思维比较僵化 |
0 commit comments