-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsynthetic_comparisons_KL_sparse.py
217 lines (190 loc) · 7.77 KB
/
synthetic_comparisons_KL_sparse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import numpy as np
from matplotlib import pyplot as plt
import NMF_KL as nmf_kl
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import sys
import plotly.io as pio
from utils import sparsify, opt_scaling
pio.kaleido.scope.mathjax = None
# Personnal comparison toolbox
# you can get it at
# https://github.com/cohenjer/shootout
from shootout.methods.runners import run_and_track
import shootout.methods.post_processors as pp
from shootout.methods.plotters import plot_speed_comparison
plt.close('all')
# --------------------- Choose parameters for grid tests ------------ #
if len(sys.argv)==1 or not sys.argv[1]:
seeds = [] #no run
skip=True
else:
seeds = list(np.arange(int(sys.argv[1])))
skip=False
variables = {
"add_track": {"distribution": "uniform"},
"mnr": [[200,100,5]],
"NbIter_inner": [10], # TODO changed to 10
"NbIter_inner_SN": [5], # TODO
"NbIter": 300,
"SNR": [100],
"delta": 0, # TODO remove, change to 0 ?? 0.1
"setup": ["dense","fac sparse","fac data sparse","data sparse"],
"epsilon": 1e-8,
"show_it": 100,
"tol": 0,
"seed": seeds,
}
algs = ["MU_KL", "fastMU_KL", "trueMU_KL", "Scalar Newton CCD"]
name = "KL_sparse_run_04-06-2024"
@run_and_track(algorithm_names=algs, path_store="Results/", name_store=name, verbose=True, skip=skip, **variables)
def one_run(verbose=True, **cfg):
m, n, r = cfg["mnr"]
# Fixed the signal
rng = np.random.RandomState(cfg["seed"]+20)
Worig = rng.rand(m, r)
Horig = rng.rand(r, n)
Vorig = Worig.dot(Horig)
match cfg["setup"]:
case "dense": # Dense
Vorig = Worig.dot(Horig) # densified
case "fac sparse": # sparse factors, dense data
Worig = sparsify(Worig, s=0.5, epsilon=cfg["epsilon"])
Horig = sparsify(Horig, s=0.5, epsilon=cfg["epsilon"])
Vorig = Worig.dot(Horig) #+ 0.01 # densified
case "fac data sparse": # sparse factors and data
Worig = sparsify(Worig, s=0.5, epsilon=cfg["epsilon"])
Horig = sparsify(Horig, s=0.5, epsilon=cfg["epsilon"])
Vorig = Worig.dot(Horig) #+ 0.1 # densified
Vorig = sparsify(Vorig, s=0.5, epsilon=r*cfg["epsilon"]**2)
case "data sparse": # dense factors, sparse data
Vorig = Worig.dot(Horig) #+ 0.1 # densified
Vorig = sparsify(Vorig, s=0.5, epsilon=r*cfg["epsilon"]**2)
# adding Poisson noise to the observed data
#N = np.random.poisson(1,size=Vorig.shape) # integers
N = rng.rand(m,n) # uniform
sigma = 10**(-cfg["SNR"]/20)*np.linalg.norm(Vorig)/np.linalg.norm(N)
V = Vorig + sigma*N
# Initialization for H0 as a random matrix
Hini = rng.rand(r, n)
Wini = rng.rand(m, r) # sparse.random(rV, cW, density=0.25).toarray()
lamb = opt_scaling(V, Wini@Hini)
Hini = lamb*Hini # TODO Sinkhorn ??
# One noise, one init; NMF is not unique and nncvx so we will find several results
error0, W0, H0, toc0, cnt0 = nmf_kl.Lee_Seung_KL(V, Wini, Hini, NbIter=cfg["NbIter"], nb_inner=cfg["NbIter_inner"], tol=cfg["tol"], verbose=verbose, print_it=cfg["show_it"], delta=cfg["delta"])
error1, W1, H1, toc1, cnt1 = nmf_kl.Proposed_KL(V, Wini, Hini, NbIter=cfg["NbIter"], nb_inner=cfg["NbIter_inner"], tol=cfg["tol"], verbose=verbose, print_it=cfg["show_it"], delta=cfg["delta"], gamma=1.9, epsilon=cfg["epsilon"])
error2, W2, H2, toc2, cnt2 = nmf_kl.Proposed_KL(V, Wini, Hini, NbIter=cfg["NbIter"], nb_inner=cfg["NbIter_inner"], tol=cfg["tol"], verbose=verbose, print_it=cfg["show_it"], delta=cfg["delta"], gamma=1.9, method="trueMU", epsilon=cfg["epsilon"])
error3, W3, H3, toc3, cnt3 = nmf_kl.ScalarNewton(V, Wini, Hini, NbIter=cfg["NbIter"], nb_inner=cfg["NbIter_inner_SN"], tol=cfg["tol"], verbose=verbose, print_it=cfg["show_it"], delta=cfg["delta"], method="CCD", epsilon=cfg["epsilon"]) # TODO care inner stop
#error4, W4, H4, toc4, cnt4 = nmf_kl.Proposed_KL(V, Wini, Hini, NbIter=NbIter, nb_inner=NbIter_inner, tol=tol, verbose=verbose, print_it=show_it, delta=delta, use_LeeS=False, gamma=1.9, true_hessian=False, epsilon=epsilon)
return {"errors": [error0, error1, error2, error3],
"timings": [toc0, toc1, toc2, toc3],
"cnt": [cnt0[::10], cnt1[::10], cnt2[::10], cnt3[::10]],
}
# -------------------- Post-Processing ------------------- #
import pandas as pd
pio.templates.default= "plotly_white"
df = pd.read_pickle("Results/"+name)
nb_seeds = df["seed"].max()+1 # get nbseed from data
# Making a convergence plot dataframe
ovars_interp = ["mnr", "setup", "algorithm"]
df = pp.interpolate_time_and_error(df, npoints = 100, adaptive_grid=True, groups=ovars_interp)
#for setup in ["dense","fac sparse","fac data sparse","data sparse"]:
# We will show convergence plots for various sigma values, with only n=100
ovars = ["mnr", "setup"]
df_conv = pp.df_to_convergence_df(df, groups=True, groups_names=ovars, other_names=ovars,err_name="errors_interp", time_name="timings_interp")#, filters=dict({"setup":setup}))
df_conv = df_conv.rename(columns={"timings_interp": "timings", "errors_interp": "errors"})
df_conv_it = pp.df_to_convergence_df(df, groups=True, groups_names=ovars, other_names=ovars)#, filters=dict({"setup":setup}))
# Median plot
df_conv_median_time = pp.median_convergence_plot(df_conv, type_x="timings")
df_conv_median_it = pp.median_convergence_plot(df_conv_it, type_x="iterations")
# Convergence plots with all runs
pxfig = px.line(df_conv_median_time,
x="timings",
y= "errors",
color='algorithm',
line_dash='algorithm',
#facet_row="mnr",
facet_col="setup",
facet_col_wrap=2,
log_y=True,
facet_col_spacing=0.1,
facet_row_spacing=0.1,
#error_y="q_errors_p",
#error_y_minus="q_errors_m"
)
# Final touch
pxfig.update_traces(
selector=dict(),
line_width=2.5,
#error_y_thickness = 0.3,
)
pxfig.update_layout(
font_size = 12,
#title_text = f"NMF Results for Setup {setup}",
width=600*1.62, # in px
height=600,
#xaxis1=dict(range=[0,0.2], title_text="Time (s)"),
#xaxis2=dict(range=[0,0.3], title_text="Time (s)"),
#xaxis3=dict(range=[0,0.2]),
#xaxis4=dict(range=[0,0.3]),
yaxis1=dict(title_text="Fit"),
yaxis3=dict(title_text="Fit")
)
pxfig.update_xaxes(
matches = None,
showticklabels = True
)
pxfig.update_yaxes(
matches=None,
showticklabels=True
)
# Convergence plots with all runs its
pxfigit = px.line(df_conv_median_it,
x="it",
y= "errors",
color='algorithm',
line_dash='algorithm',
#facet_row="mnr",
facet_col="setup",
facet_col_wrap=2,
log_y=True,
facet_col_spacing=0.1,
facet_row_spacing=0.1,
#error_y="q_errors_p",
#error_y_minus="q_errors_m"
)
# Final touch
pxfigit.update_traces(
selector=dict(),
line_width=2.5,
#error_y_thickness = 0.3,
)
pxfigit.update_layout(
font_size = 12,
#title_text = f"NMF Results for Setup {setup}",
width=600*1.62, # in px
height=600,
#xaxis1=dict(range=[0,0.2], title_text="Time (s)"),
#xaxis2=dict(range=[0,0.3], title_text="Time (s)"),
#xaxis3=dict(range=[0,0.2]),
#xaxis4=dict(range=[0,0.3]),
yaxis1=dict(title_text="Fit"),
yaxis3=dict(title_text="Fit")
)
pxfigit.update_xaxes(
matches = None,
showticklabels = True
)
pxfigit.update_yaxes(
matches=None,
showticklabels=True
)
pxfig.write_image("Results/"+name+".pdf")
pxfig.write_image("Results/"+name+".pdf")
pxfigit.write_image("Results/"+name+"_it.pdf")
pxfig.show()
pxfigit.show()
#pxfig.write_image("Results/"+name+"_"+setup+".pdf")
#pxfig.write_image("Results/"+name+"_"+setup+".pdf")
#pxfig.show()