From 8c374c8b901b113e20b589b49de3d7181fc55edd Mon Sep 17 00:00:00 2001 From: Dustin <6962246+djdarcy@users.noreply.github.com> Date: Sun, 12 Oct 2025 02:40:30 -0400 Subject: [PATCH] Fix SageAttention crash after PR #10276 fp8 weight scaling changes Problem: After PR #10276 (commit 139addd5) introduced convert_func/set_func for proper fp8 weight scaling during LoRA application, users with SageAttention enabled experience 100% reproducible crashes (Exception 0xC0000005 ACCESS_VIOLATION) during KSampler execution. Root Cause: PR #10276 added fp8 weight transformations (scale up -> apply LoRA -> scale down) to fix LoRA quality with Wan 2.1/2.2 14B fp8 models. These transformations: 1. Convert weights to float32 and create copies (new memory addresses) 2. Invalidate tensor metadata that SageAttention cached 3. Break SageAttention's internal memory references 4. Cause access violation when SageAttention tries to use old pointers SageAttention expects weights at original memory addresses without transformations between caching and usage. Solution: Add conditional bypass in LowVramPatch.__call__ to detect when SageAttention is active (via --use-sage-attention flag) and skip convert_func/set_func calls. This preserves SageAttention's memory reference stability while maintaining PR #10276 benefits for users without SageAttention. Trade-offs: - When SageAttention is enabled with fp8 models + LoRAs, LoRAs are applied to scaled weights instead of properly scaled weights - Potential quality impact unknown (no issues observed in testing) - Only affects users who explicitly enable SageAttention flag - Users without SageAttention continue to benefit from PR #10276 Testing Completed: - RTX 5090, CUDA 12.8, PyTorch 2.7.0, SageAttention 2.1.1 - Wan 2.2 fp8 models with multiple LoRAs - Crash eliminated, ~40% SageAttention performance benefit preserved - No visual quality degradation observed - Non-SageAttention workflows unaffected Testing Requested: - Other GPU architectures (RTX 4090, 3090, etc.) - Different CUDA/PyTorch version combinations - fp8 LoRA quality comparison with SageAttention enabled - Edge cases: mixed fp8/non-fp8 workflows Files Changed: - comfy/model_patcher.py: LowVramPatch.__call__ method Related: - Issue: SageAttention incompatibility with fp8 weight scaling - Original PR: #10276 (fp8 LoRA quality fix for Wan models) - SageAttention: https://github.com/thu-ml/SageAttention --- comfy/model_patcher.py | 25 ++++++++++++++++++++++--- 1 file changed, 22 insertions(+), 3 deletions(-) diff --git a/comfy/model_patcher.py b/comfy/model_patcher.py index c0b68fb8cff7..2f71703b64b3 100644 --- a/comfy/model_patcher.py +++ b/comfy/model_patcher.py @@ -130,9 +130,22 @@ def __init__(self, key, patches, convert_func=None, set_func=None): self.set_func = set_func def __call__(self, weight): + # Detect SageAttention and skip conversion for compatibility + sage_attention_active = False + try: + import comfy.cli_args + sage_attention_active = hasattr(comfy.cli_args.args, 'use_sage_attention') and \ + comfy.cli_args.args.use_sage_attention + except: + pass + intermediate_dtype = weight.dtype - if self.convert_func is not None: + + # Skip convert_func when SageAttention is active (compatibility mode) + if self.convert_func is not None and not sage_attention_active: weight = self.convert_func(weight.to(dtype=torch.float32, copy=True), inplace=True) + elif sage_attention_active and self.convert_func is not None: + logging.debug(f"Skipping convert_func for {self.key} (SageAttention compatibility)") if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops intermediate_dtype = torch.float32 @@ -140,10 +153,16 @@ def __call__(self, weight): if self.set_func is None: return comfy.float.stochastic_rounding(out, weight.dtype, seed=string_to_seed(self.key)) else: - return self.set_func(out, seed=string_to_seed(self.key), return_weight=True) + # Skip set_func when SageAttention is active (compatibility mode) + if not sage_attention_active: + return self.set_func(out, seed=string_to_seed(self.key), return_weight=True) + else: + return comfy.float.stochastic_rounding(out, weight.dtype, seed=string_to_seed(self.key)) out = comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype) - if self.set_func is not None: + + # Skip set_func when SageAttention is active (compatibility mode) + if self.set_func is not None and not sage_attention_active: return self.set_func(out, seed=string_to_seed(self.key), return_weight=True).to(dtype=intermediate_dtype) else: return out