|
2 | 2 | "cells": [
|
3 | 3 | {
|
4 | 4 | "cell_type": "code",
|
5 |
| - "execution_count": 74, |
| 5 | + "execution_count": 2, |
6 | 6 | "metadata": {},
|
7 | 7 | "outputs": [],
|
8 | 8 | "source": [
|
|
14 | 14 | },
|
15 | 15 | {
|
16 | 16 | "cell_type": "code",
|
17 |
| - "execution_count": 75, |
| 17 | + "execution_count": 3, |
18 | 18 | "metadata": {},
|
19 | 19 | "outputs": [
|
20 | 20 | {
|
|
35 | 35 | },
|
36 | 36 | {
|
37 | 37 | "cell_type": "code",
|
38 |
| - "execution_count": 76, |
| 38 | + "execution_count": 4, |
39 | 39 | "metadata": {},
|
40 | 40 | "outputs": [],
|
41 | 41 | "source": [
|
|
59 | 59 | },
|
60 | 60 | {
|
61 | 61 | "cell_type": "code",
|
62 |
| - "execution_count": 77, |
| 62 | + "execution_count": 5, |
63 | 63 | "metadata": {},
|
64 | 64 | "outputs": [
|
65 | 65 | {
|
|
89 | 89 | },
|
90 | 90 | {
|
91 | 91 | "cell_type": "code",
|
92 |
| - "execution_count": 78, |
| 92 | + "execution_count": 6, |
93 | 93 | "metadata": {},
|
94 | 94 | "outputs": [],
|
95 | 95 | "source": [
|
|
100 | 100 | },
|
101 | 101 | {
|
102 | 102 | "cell_type": "code",
|
103 |
| - "execution_count": 79, |
| 103 | + "execution_count": 7, |
104 | 104 | "metadata": {},
|
105 | 105 | "outputs": [
|
106 | 106 | {
|
|
163 | 163 | },
|
164 | 164 | {
|
165 | 165 | "cell_type": "code",
|
166 |
| - "execution_count": 80, |
| 166 | + "execution_count": 8, |
167 | 167 | "metadata": {},
|
168 | 168 | "outputs": [
|
169 | 169 | {
|
|
224 | 224 | },
|
225 | 225 | {
|
226 | 226 | "cell_type": "code",
|
227 |
| - "execution_count": 81, |
| 227 | + "execution_count": 9, |
228 | 228 | "metadata": {},
|
229 | 229 | "outputs": [],
|
230 | 230 | "source": [
|
|
234 | 234 | },
|
235 | 235 | {
|
236 | 236 | "cell_type": "code",
|
237 |
| - "execution_count": 82, |
| 237 | + "execution_count": 10, |
238 | 238 | "metadata": {},
|
239 | 239 | "outputs": [
|
240 | 240 | {
|
|
251 | 251 | },
|
252 | 252 | {
|
253 | 253 | "cell_type": "code",
|
254 |
| - "execution_count": 83, |
| 254 | + "execution_count": 11, |
255 | 255 | "metadata": {},
|
256 | 256 | "outputs": [
|
257 | 257 | {
|
|
260 | 260 | "0.5219995371567658"
|
261 | 261 | ]
|
262 | 262 | },
|
263 |
| - "execution_count": 83, |
| 263 | + "execution_count": 11, |
264 | 264 | "metadata": {},
|
265 | 265 | "output_type": "execute_result"
|
266 | 266 | }
|
|
271 | 271 | },
|
272 | 272 | {
|
273 | 273 | "cell_type": "code",
|
274 |
| - "execution_count": 84, |
| 274 | + "execution_count": 12, |
275 | 275 | "metadata": {},
|
276 | 276 | "outputs": [
|
277 | 277 | {
|
|
288 | 288 | },
|
289 | 289 | {
|
290 | 290 | "cell_type": "code",
|
291 |
| - "execution_count": 85, |
| 291 | + "execution_count": 13, |
292 | 292 | "metadata": {},
|
293 | 293 | "outputs": [
|
294 | 294 | {
|
295 |
| - "ename": "ImportError", |
296 |
| - "evalue": "Missing optional dependency 'tabulate'. Use pip or conda to install tabulate.", |
297 |
| - "output_type": "error", |
298 |
| - "traceback": [ |
299 |
| - "\u001b[31m---------------------------------------------------------------------------\u001b[39m", |
300 |
| - "\u001b[31mModuleNotFoundError\u001b[39m Traceback (most recent call last)", |
301 |
| - "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/alpine/lib/python3.12/site-packages/pandas/compat/_optional.py:135\u001b[39m, in \u001b[36mimport_optional_dependency\u001b[39m\u001b[34m(name, extra, errors, min_version)\u001b[39m\n\u001b[32m 134\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m135\u001b[39m module = \u001b[43mimportlib\u001b[49m\u001b[43m.\u001b[49m\u001b[43mimport_module\u001b[49m\u001b[43m(\u001b[49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 136\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m:\n", |
302 |
| - "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/alpine/lib/python3.12/importlib/__init__.py:90\u001b[39m, in \u001b[36mimport_module\u001b[39m\u001b[34m(name, package)\u001b[39m\n\u001b[32m 89\u001b[39m level += \u001b[32m1\u001b[39m\n\u001b[32m---> \u001b[39m\u001b[32m90\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_bootstrap\u001b[49m\u001b[43m.\u001b[49m\u001b[43m_gcd_import\u001b[49m\u001b[43m(\u001b[49m\u001b[43mname\u001b[49m\u001b[43m[\u001b[49m\u001b[43mlevel\u001b[49m\u001b[43m:\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpackage\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlevel\u001b[49m\u001b[43m)\u001b[49m\n", |
303 |
| - "\u001b[36mFile \u001b[39m\u001b[32m<frozen importlib._bootstrap>:1381\u001b[39m, in \u001b[36m_gcd_import\u001b[39m\u001b[34m(name, package, level)\u001b[39m\n", |
304 |
| - "\u001b[36mFile \u001b[39m\u001b[32m<frozen importlib._bootstrap>:1354\u001b[39m, in \u001b[36m_find_and_load\u001b[39m\u001b[34m(name, import_)\u001b[39m\n", |
305 |
| - "\u001b[36mFile \u001b[39m\u001b[32m<frozen importlib._bootstrap>:1318\u001b[39m, in \u001b[36m_find_and_load_unlocked\u001b[39m\u001b[34m(name, import_)\u001b[39m\n", |
306 |
| - "\u001b[31mModuleNotFoundError\u001b[39m: No module named 'tabulate'", |
307 |
| - "\nDuring handling of the above exception, another exception occurred:\n", |
308 |
| - "\u001b[31mImportError\u001b[39m Traceback (most recent call last)", |
309 |
| - "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[85]\u001b[39m\u001b[32m, line 2\u001b[39m\n\u001b[32m 1\u001b[39m \u001b[38;5;66;03m# Convert the DataFrame to Markdown\u001b[39;00m\n\u001b[32m----> \u001b[39m\u001b[32m2\u001b[39m markdown_table = \u001b[43malgorithm_stats\u001b[49m\u001b[43m.\u001b[49m\u001b[43mto_markdown\u001b[49m\u001b[43m(\u001b[49m\u001b[43mindex\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[32m 4\u001b[39m \u001b[38;5;66;03m# Print the Markdown table\u001b[39;00m\n\u001b[32m 5\u001b[39m \u001b[38;5;28mprint\u001b[39m(markdown_table)\n", |
310 |
| - "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/alpine/lib/python3.12/site-packages/pandas/util/_decorators.py:333\u001b[39m, in \u001b[36mdeprecate_nonkeyword_arguments.<locals>.decorate.<locals>.wrapper\u001b[39m\u001b[34m(*args, **kwargs)\u001b[39m\n\u001b[32m 327\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(args) > num_allow_args:\n\u001b[32m 328\u001b[39m warnings.warn(\n\u001b[32m 329\u001b[39m msg.format(arguments=_format_argument_list(allow_args)),\n\u001b[32m 330\u001b[39m \u001b[38;5;167;01mFutureWarning\u001b[39;00m,\n\u001b[32m 331\u001b[39m stacklevel=find_stack_level(),\n\u001b[32m 332\u001b[39m )\n\u001b[32m--> \u001b[39m\u001b[32m333\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", |
311 |
| - "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/alpine/lib/python3.12/site-packages/pandas/core/frame.py:2983\u001b[39m, in \u001b[36mDataFrame.to_markdown\u001b[39m\u001b[34m(self, buf, mode, index, storage_options, **kwargs)\u001b[39m\n\u001b[32m 2981\u001b[39m kwargs.setdefault(\u001b[33m\"\u001b[39m\u001b[33mtablefmt\u001b[39m\u001b[33m\"\u001b[39m, \u001b[33m\"\u001b[39m\u001b[33mpipe\u001b[39m\u001b[33m\"\u001b[39m)\n\u001b[32m 2982\u001b[39m kwargs.setdefault(\u001b[33m\"\u001b[39m\u001b[33mshowindex\u001b[39m\u001b[33m\"\u001b[39m, index)\n\u001b[32m-> \u001b[39m\u001b[32m2983\u001b[39m tabulate = \u001b[43mimport_optional_dependency\u001b[49m\u001b[43m(\u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mtabulate\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[32m 2984\u001b[39m result = tabulate.tabulate(\u001b[38;5;28mself\u001b[39m, **kwargs)\n\u001b[32m 2985\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m buf \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", |
312 |
| - "\u001b[36mFile \u001b[39m\u001b[32m~/miniforge3/envs/alpine/lib/python3.12/site-packages/pandas/compat/_optional.py:138\u001b[39m, in \u001b[36mimport_optional_dependency\u001b[39m\u001b[34m(name, extra, errors, min_version)\u001b[39m\n\u001b[32m 136\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m:\n\u001b[32m 137\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m errors == \u001b[33m\"\u001b[39m\u001b[33mraise\u001b[39m\u001b[33m\"\u001b[39m:\n\u001b[32m--> \u001b[39m\u001b[32m138\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m(msg)\n\u001b[32m 139\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[32m 141\u001b[39m \u001b[38;5;66;03m# Handle submodules: if we have submodule, grab parent module from sys.modules\u001b[39;00m\n", |
313 |
| - "\u001b[31mImportError\u001b[39m: Missing optional dependency 'tabulate'. Use pip or conda to install tabulate." |
| 295 | + "name": "stdout", |
| 296 | + "output_type": "stream", |
| 297 | + "text": [ |
| 298 | + "| dataset | mean | median | std |\n", |
| 299 | + "|:------------------------------|------------:|---------:|-----------:|\n", |
| 300 | + "| 663_rabe_266 | 0.994973 | 0.994792 | 0.00138667 |\n", |
| 301 | + "| 527_analcatdata_election2000 | 0.992298 | 0.992383 | 0.00615176 |\n", |
| 302 | + "| 505_tecator | 0.985639 | 0.987823 | 0.00600829 |\n", |
| 303 | + "| 561_cpu | 0.976692 | 0.981073 | 0.0157433 |\n", |
| 304 | + "| 690_visualizing_galaxy | 0.96399 | 0.966614 | 0.00791278 |\n", |
| 305 | + "| 560_bodyfat | 0.595445 | 0.9646 | 0.678973 |\n", |
| 306 | + "| 227_cpu_small | 0.949931 | 0.95302 | 0.0102687 |\n", |
| 307 | + "| 197_cpu_act | 0.939741 | 0.948657 | 0.0297579 |\n", |
| 308 | + "| 523_analcatdata_neavote | 0.936577 | 0.943564 | 0.0278365 |\n", |
| 309 | + "| 556_analcatdata_apnea2 | 0.863564 | 0.867927 | 0.0218752 |\n", |
| 310 | + "| 229_pwLinear | 0.856554 | 0.864017 | 0.0295234 |\n", |
| 311 | + "| 1027_ESL | 0.859966 | 0.859878 | 0.0219077 |\n", |
| 312 | + "| 557_analcatdata_apnea1 | 0.860032 | 0.85602 | 0.0457254 |\n", |
| 313 | + "| 210_cloud | 0.785513 | 0.855809 | 0.174546 |\n", |
| 314 | + "| 695_chatfield_4 | 0.857361 | 0.854139 | 0.0323364 |\n", |
| 315 | + "| 1096_FacultySalaries | 0.60718 | 0.836315 | 0.51419 |\n", |
| 316 | + "| 529_pollen | 0.787219 | 0.782358 | 0.0118861 |\n", |
| 317 | + "| 230_machine_cpu | 0.561278 | 0.759371 | 0.550194 |\n", |
| 318 | + "| 503_wind | 0.7556 | 0.752685 | 0.0109313 |\n", |
| 319 | + "| 712_chscase_geyser1 | 0.749426 | 0.749685 | 0.0527733 |\n", |
| 320 | + "| 1089_USCrime | 0.708195 | 0.739885 | 0.140384 |\n", |
| 321 | + "| 228_elusage | 0.624231 | 0.721685 | 0.225679 |\n", |
| 322 | + "| 519_vinnie | 0.724621 | 0.713402 | 0.0364589 |\n", |
| 323 | + "| 225_puma8NH | 0.673587 | 0.67684 | 0.0196146 |\n", |
| 324 | + "| 666_rmftsa_ladata | 0.678517 | 0.663484 | 0.0452063 |\n", |
| 325 | + "| 659_sleuth_ex1714 | 0.577351 | 0.610788 | 0.252262 |\n", |
| 326 | + "| 706_sleuth_case1202 | 0.43508 | 0.572711 | 0.418311 |\n", |
| 327 | + "| 1029_LEV | 0.557463 | 0.553204 | 0.0361047 |\n", |
| 328 | + "| 547_no2 | 0.473821 | 0.44619 | 0.102342 |\n", |
| 329 | + "| 1030_ERA | 0.385125 | 0.381476 | 0.0469926 |\n", |
| 330 | + "| 1028_SWD | 0.339529 | 0.339576 | 0.0394794 |\n", |
| 331 | + "| 485_analcatdata_vehicle | 0.162436 | 0.304339 | 0.714552 |\n", |
| 332 | + "| 542_pollution | -0.510228 | 0.252399 | 2.12619 |\n", |
| 333 | + "| 522_pm10 | 0.242843 | 0.240674 | 0.0524153 |\n", |
| 334 | + "| 665_sleuth_case2002 | 0.16439 | 0.216995 | 0.215279 |\n", |
| 335 | + "| 192_vineyard | 0.204839 | 0.213078 | 0.382138 |\n", |
| 336 | + "| 687_sleuth_ex1605 | 0.00789428 | 0.15175 | 0.394736 |\n", |
| 337 | + "| 678_visualizing_environmental | 0.107825 | 0.111752 | 0.199401 |\n" |
314 | 338 | ]
|
315 | 339 | }
|
316 | 340 | ],
|
|
0 commit comments