-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathn3pbib.html
191 lines (153 loc) · 4.49 KB
/
n3pbib.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>bibtex2html output</title>
</head>
<body>
<!-- This document was automatically generated with bibtex2html 1.96
(see http://www.lri.fr/~filliatr/bibtex2html/),
with the following command:
bibtex2html -s alpha -->
<table>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="Juliasirev">BEKS17</a>]
</td>
<td class="bibtexitem">
J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah.
Julia: A fresh approach to numerical computing.
<em>SIAM Review</em>, 59:65-98, 2017.
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="CarsonHigham">CH18</a>]
</td>
<td class="bibtexitem">
E. Carson and N. J. Higham.
Accelerating the solution of linear systems by iterative refinement
in three precisions.
<em>SIAM Journal on Scientific Computing</em>, 40(2):A817-A847, 2018.
[ <a href="http://dx.doi.org/10.1137/17M1140819">DOI</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="CarsonHigham1">CH17</a>]
</td>
<td class="bibtexitem">
E. Carson and N. J. Higham.
A new analysis of iterative refinement and its application of
accurate solution of ill-conditioned sparse linear systems.
<em>SIAM Journal on Scientific Computing</em>, 39(6):A2834-A2856, 2017.
[ <a href="http://dx.doi.org/10.1137/17M112291">DOI</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="chand">Cha60</a>]
</td>
<td class="bibtexitem">
S. Chandrasekhar.
<em>Radiative Transfer</em>.
Dover, New York, 1960.
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="dens">DS96</a>]
</td>
<td class="bibtexitem">
J. E. Dennis and R. B. Schnabel.
<em>Numerical Methods for Unconstrained Optimization and Nonlinear
Equations</em>.
Number 16 in Classics in Applied Mathematics. SIAM, Philadelphia,
1996.
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="ctk:roots">Kel95</a>]
</td>
<td class="bibtexitem">
C. T. Kelley.
<em>Iterative Methods for Linear and Nonlinear Equations</em>.
Number 16 in Frontiers in Applied Mathematics. SIAM, Philadelphia,
1995.
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="ctk:acta">Kel18</a>]
</td>
<td class="bibtexitem">
C. T. Kelley.
Numerical methods for nonlinear equations.
<em>Acta Numerica</em>, 27:207-287, 2018.
[ <a href="http://dx.doi.org/10.1017/S0962492917000113">DOI</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="ctk:sirev20">Kel22a</a>]
</td>
<td class="bibtexitem">
C. T. Kelley.
Newton's method in mixed precision.
<em>SIAM Review</em>, 64:191-211, 2022.
[ <a href="http://dx.doi.org/10.1137/20M1342902">DOI</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="ctk:notebooknl">Kel22b</a>]
</td>
<td class="bibtexitem">
C. T. Kelley.
Notebook for Solving Nonlinear Equations with Iterative Methods:
Solvers and Examples in Julia.
https://github.com/ctkelley/NotebookSIAMFANL, 2022.
IJulia Notebook.
[ <a href="http://dx.doi.org/10.5281/zenodo.4284687">DOI</a> |
<a href="https://github.com/ctkelley/NotebookSIAMFANL">http</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="ctk:siamfanl">Kel22c</a>]
</td>
<td class="bibtexitem">
C. T. Kelley.
SIAMFANLEquations.jl.
https://github.com/ctkelley/SIAMFANLEquations.jl, 2022.
Julia Package.
[ <a href="http://dx.doi.org/10.5281/zenodo.4284807">DOI</a> |
<a href="https://github.com/ctkelley/SIAMFANLEquations.jl">http</a> ]
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="ctk:fajulia">Kel22d</a>]
</td>
<td class="bibtexitem">
C. T. Kelley.
<em>Solving Nonlinear Equations with Iterative Methods: Solvers and
Examples in Julia</em>.
Number 20 in Fundamentals of Algorithms. SIAM, Philadelphia, 2022.
</td>
</tr>
<tr valign="top">
<td align="right" class="bibtexnumber">
[<a name="ctk:Newton3p">Kel23</a>]
</td>
<td class="bibtexitem">
C. T. Kelley.
Newton's method in three precisions, 2023.
To appear in Pacific Journal of Optimization.
[ <a href="http://arxiv.org/abs/2307.16051">arXiv</a> ]
</td>
</tr>
</table><hr><p><em>This file was generated by
<a href="http://www.lri.fr/~filliatr/bibtex2html/">bibtex2html</a> 1.96.</em></p>
</body>
</html>