Skip to content

Commit 857d91c

Browse files
committed
More for Chapter 5
1 parent a13132c commit 857d91c

File tree

2 files changed

+544
-234
lines changed

2 files changed

+544
-234
lines changed

SIAMFANLCh5.ipynb

+155-5
Original file line numberDiff line numberDiff line change
@@ -44,14 +44,13 @@
4444
"\\newcommand{\\ball}{{\\cal B}}\n",
4545
"\\newcommand{\\ptc}{{\\Psi TC}}\n",
4646
"\\newcommand{\\diag}{\\mbox{diag}}\n",
47-
"\\newcommand{\\begeq}{{\\begin{equation}}}\n",
48-
"\\newcommand{\\endeq}{{\\end{equation}}}\n",
47+
"\\newcommand{\\frechet}{{Fr\\'echet\\ }}\n",
4948
"$"
5049
]
5150
},
5251
{
5352
"cell_type": "code",
54-
"execution_count": 4,
53+
"execution_count": 8,
5554
"metadata": {},
5655
"outputs": [],
5756
"source": [
@@ -508,7 +507,7 @@
508507
},
509508
{
510509
"cell_type": "code",
511-
"execution_count": 5,
510+
"execution_count": 9,
512511
"metadata": {},
513512
"outputs": [
514513
{
@@ -562,7 +561,7 @@
562561
},
563562
{
564563
"cell_type": "code",
565-
"execution_count": 6,
564+
"execution_count": 10,
566565
"metadata": {},
567566
"outputs": [
568567
{
@@ -610,6 +609,157 @@
610609
"vary_xferheat_parms();"
611610
]
612611
},
612+
{
613+
"cell_type": "markdown",
614+
"metadata": {},
615+
"source": [
616+
"## Section 5.2: A Continuation Problem for the $H$-equation"
617+
]
618+
},
619+
{
620+
"cell_type": "markdown",
621+
"metadata": {},
622+
"source": [
623+
"### Section 5.2.1: Properties of $H$ as a function of $c$\n",
624+
"\n",
625+
"In this section we will explore some properties of the solution of\n",
626+
"$H$-equation as a function of $c$. As before, we will do the the analysis\n",
627+
"for the continuous problem, but the results are valid for any discretization\n",
628+
"with a quadrature rule with positive weights that integrates constants\n",
629+
"exactly.\n",
630+
"\n",
631+
"Recall that the equation in $C[0,1]$ is\n",
632+
"$$\n",
633+
"\\calf(H)(\\mu) =\n",
634+
"H(\\mu) - \\frac{1}{1 - \\int_0^1 \\frac{\\mu H(\\mu)}{\\mu+\\nu} \\dnu} = 0.\n",
635+
"$$\n",
636+
"We will also refer to the fixed point form of the equation\n",
637+
"$$\n",
638+
"H(\\mu) = \\calg(H)(\\mu) =\n",
639+
"\\int_0^1 \\frac{\\mu H(\\mu)}{\\mu+\\nu} \\dnu.\n",
640+
"$$\n",
641+
"\n",
642+
"We will use an alternative form of the $H$-equation to compute\n",
643+
"the $L^1$ norm of $H$.\n",
644+
"$$\n",
645+
"H(\\mu) = 1 + \\frac{c}{2} H(\\mu) \\int_0^1 \\frac{\\mu}{\\mu + \\nu} H(\\nu) \\dnu.\n",
646+
"$$\n",
647+
"\n",
648+
"Integrating both sides of the alternative formulation yields\n",
649+
"$$\n",
650+
"\\| H \\|_1 =\n",
651+
"1 + \\frac{c}{2} \\int_0^1 \\int_0^1 H(\\mu) H(\\nu) \\frac{\\mu}{\\mu + \\nu} \\dnu.\n",
652+
"$$\n",
653+
"Since $\\mu$ and $\\nu$ are variables of integration, we may interchange\n",
654+
"them to obtain\n",
655+
"$$\n",
656+
"\\| H \\|_1 =\n",
657+
"1 + \\frac{c}{2} \\int_0^1 \\int_0^1 H(\\mu) H(\\nu) \\frac{\\nu}{\\mu + \\nu} \\dnu.\n",
658+
"$$\n",
659+
"When we average the two equations we obtain\n",
660+
"$$\n",
661+
"\\| H \\|_1 =\n",
662+
"1 + \\frac{c}{4} \\| H \\|_1^2.\n",
663+
"$$\n",
664+
"So\n",
665+
"$$\n",
666+
"\\| H \\|_1 = \\frac{1 \\pm \\sqrt{1 - c}}{c/2}.\n",
667+
"$$\n",
668+
"\n",
669+
"As we said in Chapter __2__, the H-equation has two solutions\n",
670+
"for $0 < c < 1$. The\n",
671+
"__lower branch__, where $\\| H \\|_1 = \\frac{1 - \\sqrt{1 - c}}{c/2}$\n",
672+
"is the solution of physical interest and the one you're likely to find\n",
673+
"with any iteration. In this section we will explore computation of the\n",
674+
"__upper branch__, where $\\| H \\|_1 = \\frac{1 + \\sqrt{1 - c}}{c/2}$.\n",
675+
"\n",
676+
"The formula for the $L^1$ norm implies that the $H$-equation has no real\n",
677+
"solutions for $c > 1$. This implies that the Frechet\n",
678+
"derivative\n",
679+
"$\\calf'$ of $\\calf$ must be singular. The solution path cannot stop\n",
680+
"abruptly <cite data-cite=\"crandall\"><a href=\"siamfa.html#crandall\">(CR71)</cite>,\n",
681+
"so there must be an upper\n",
682+
"branch. The formula for the $L^1$ norm implies that $\\| H \\|_1 \\to \\infty$\n",
683+
"on the upper branch.\n",
684+
"\n",
685+
"We will briefly consider the details of the singularity before\n",
686+
"following the path. We begin by showing that $\\calf'(H)$ is nonsingular\n",
687+
"for $0 \\le c < 1$ on the lower branch. To simplify the analysis we define\n",
688+
"the linear operator $\\call$ on $C[0,1]$ by\n",
689+
"$$\n",
690+
"(\\call u)(\\mu) = \\int_0^1 \\frac{\\mu u(\\nu)}{\\mu + \\nu} \\dnu\n",
691+
"$$\n",
692+
"and express the $H$-equation as\n",
693+
"$$\n",
694+
"H = \\frac{1}{1 - (c/2) \\call H}\n",
695+
"$$\n",
696+
"where the division is understood to be pointwise. Now\n",
697+
"note that for $u \\in C[0,1]$,\n",
698+
"$$\n",
699+
"\\calf'(H) u = u - \\frac{(c/2) \\call u}{(1 - (c/2) \\call H)^2}\n",
700+
" = u - H^2 (c/2) \\call u.\n",
701+
"$$\n",
702+
"Here we use, as we have before, the simple trick to compute a Frechet\n",
703+
"derivative\n",
704+
"$$\n",
705+
"\\calf'(H)u = \\frac{d}{d \\epsilon} \\calf(H + \\epsilon u)\n",
706+
"\\bigg|_{\\epsilon = 0 }.\n",
707+
"$$\n",
708+
"Since $\\calf'$ is the sum of a compact operator and the identity, it is\n",
709+
"singular only if $0$ is an eigenvector. So singularity of $\\calf'$ is\n",
710+
"equivalent to $\\calg'(H)$ having $\\lambda = 1$ as an eigenvalue.\n",
711+
" \n",
712+
"When $c = 1$, the Perron theorem\n",
713+
"<cite data-cite=\"karlin\"><a href=\"siamfa.html#karlin\">(Kar59)</cite>\n",
714+
"and the positivity of the\n",
715+
"$H$-function imply that the largest eigenvalue in absolute value\n",
716+
"of $\\calg'(H)$ is positive and the corresponding eigenfunction\n",
717+
"does not change sign, and hence can be taken as\n",
718+
"non-negative. That eigenvalue is $\\lambda = 1$ and the eigenfunction\n",
719+
"is $u(\\mu) = \\mu H(\\mu)$. To see this use the formula for the $L^1$ norm and compute,\n",
720+
"with $\\| H \\|_1 = 2$,\n",
721+
"$$\n",
722+
"\\begin{array}{ll}\n",
723+
"\\calg'(H)(u)(\\mu) & = H^2(\\mu) (1/2) \\int_0^1 \\frac{\\mu \\nu H(\\nu)}{\\mu + \\nu}\n",
724+
"\\dnu \\\\\n",
725+
"\\\\\n",
726+
"& = (\\mu H(\\mu)) H(\\mu) (1/2) \\int_0^1 \\frac{\\nu H(\\nu)}{\\mu + \\nu} \\dnu \\\\\n",
727+
"\\\\\n",
728+
"& = u(\\mu) H(\\mu) (1/2) \\int_0^1 H(\\nu) (1 - \\frac{\\mu}{\\mu + \\nu} ) \\dnu \\\\\n",
729+
"\\\\\n",
730+
"& = u(\\mu) \\left( H(\\mu) - (1/2) (H \\call H)(\\mu) \\right) = u(\\mu)\n",
731+
"\\end{array}\n",
732+
"$$\n",
733+
"Since $u \\ge 0$, $\\lambda = 1$ is the Perron eigenvalue. Therefore\n",
734+
"the eigenvalue has multiplicity one.\n",
735+
"\n",
736+
"The Perron theory is also applicable if $0 < c < 1$. Let\n",
737+
"$\\lambda > 0$ be the Perron eigenvalue of\n",
738+
"$\\calg'(H)$ with eigenfunction $u$. Set $u(\\mu) = \\mu H(\\mu) p(\\mu)$.\n",
739+
"Then\n",
740+
"$$\n",
741+
"\\begin{array}{ll}\n",
742+
"\\lambda p(\\mu) & = H(\\mu) (c/2) \\int_0^1\n",
743+
"\\frac{H(\\nu) p(\\nu) \\nu}{\\mu + \\nu} \\dnu\n",
744+
"\\le \\| p \\|_\\infty H(\\mu) (c/2) \\int_0^1 \\frac{H(\\nu) \\nu}{\\mu + \\nu} \\dnu\\\\\n",
745+
"\\\\\n",
746+
"& \\le \\| p \\|_\\infty H(\\mu) (c/2)\n",
747+
"\\int_0^1 H(\\nu) \\left(1 - \\frac{\\mu}{\\mu + \\nu} \\right) \\dnu\n",
748+
"= \\| p \\|_\\infty H(\\mu) (1 - \\sqrt{1-c} ) - (H(\\mu) - 1)\\\\\n",
749+
"\\\\\n",
750+
"& = \\| p \\|_\\infty (1 - H(\\mu) \\sqrt{1-c} )\n",
751+
"\\le \\| p \\|_\\infty (1 - \\sqrt{1-c})\n",
752+
"\\end{array}\n",
753+
"$$\n",
754+
"Hence, taking the $L^\\infty$ norm of the left side of \\eqnok{lambdaest},\n",
755+
"we have\n",
756+
"$$\n",
757+
"\\lambda \\le 1 - \\sqrt{1-c} < 1.\n",
758+
"$$\n",
759+
"Hence $\\calf'(H)$ is nonsingular for $0 < c < 1$ on the lower branch.\n",
760+
"This also proves the norm estimate from Chapter __4__.\n"
761+
]
762+
},
613763
{
614764
"cell_type": "code",
615765
"execution_count": null,

0 commit comments

Comments
 (0)