|
44 | 44 | "\\newcommand{\\ball}{{\\cal B}}\n",
|
45 | 45 | "\\newcommand{\\ptc}{{\\Psi TC}}\n",
|
46 | 46 | "\\newcommand{\\diag}{\\mbox{diag}}\n",
|
47 |
| - "\\newcommand{\\begeq}{{\\begin{equation}}}\n", |
48 |
| - "\\newcommand{\\endeq}{{\\end{equation}}}\n", |
| 47 | + "\\newcommand{\\frechet}{{Fr\\'echet\\ }}\n", |
49 | 48 | "$"
|
50 | 49 | ]
|
51 | 50 | },
|
52 | 51 | {
|
53 | 52 | "cell_type": "code",
|
54 |
| - "execution_count": 4, |
| 53 | + "execution_count": 8, |
55 | 54 | "metadata": {},
|
56 | 55 | "outputs": [],
|
57 | 56 | "source": [
|
|
508 | 507 | },
|
509 | 508 | {
|
510 | 509 | "cell_type": "code",
|
511 |
| - "execution_count": 5, |
| 510 | + "execution_count": 9, |
512 | 511 | "metadata": {},
|
513 | 512 | "outputs": [
|
514 | 513 | {
|
|
562 | 561 | },
|
563 | 562 | {
|
564 | 563 | "cell_type": "code",
|
565 |
| - "execution_count": 6, |
| 564 | + "execution_count": 10, |
566 | 565 | "metadata": {},
|
567 | 566 | "outputs": [
|
568 | 567 | {
|
|
610 | 609 | "vary_xferheat_parms();"
|
611 | 610 | ]
|
612 | 611 | },
|
| 612 | + { |
| 613 | + "cell_type": "markdown", |
| 614 | + "metadata": {}, |
| 615 | + "source": [ |
| 616 | + "## Section 5.2: A Continuation Problem for the $H$-equation" |
| 617 | + ] |
| 618 | + }, |
| 619 | + { |
| 620 | + "cell_type": "markdown", |
| 621 | + "metadata": {}, |
| 622 | + "source": [ |
| 623 | + "### Section 5.2.1: Properties of $H$ as a function of $c$\n", |
| 624 | + "\n", |
| 625 | + "In this section we will explore some properties of the solution of\n", |
| 626 | + "$H$-equation as a function of $c$. As before, we will do the the analysis\n", |
| 627 | + "for the continuous problem, but the results are valid for any discretization\n", |
| 628 | + "with a quadrature rule with positive weights that integrates constants\n", |
| 629 | + "exactly.\n", |
| 630 | + "\n", |
| 631 | + "Recall that the equation in $C[0,1]$ is\n", |
| 632 | + "$$\n", |
| 633 | + "\\calf(H)(\\mu) =\n", |
| 634 | + "H(\\mu) - \\frac{1}{1 - \\int_0^1 \\frac{\\mu H(\\mu)}{\\mu+\\nu} \\dnu} = 0.\n", |
| 635 | + "$$\n", |
| 636 | + "We will also refer to the fixed point form of the equation\n", |
| 637 | + "$$\n", |
| 638 | + "H(\\mu) = \\calg(H)(\\mu) =\n", |
| 639 | + "\\int_0^1 \\frac{\\mu H(\\mu)}{\\mu+\\nu} \\dnu.\n", |
| 640 | + "$$\n", |
| 641 | + "\n", |
| 642 | + "We will use an alternative form of the $H$-equation to compute\n", |
| 643 | + "the $L^1$ norm of $H$.\n", |
| 644 | + "$$\n", |
| 645 | + "H(\\mu) = 1 + \\frac{c}{2} H(\\mu) \\int_0^1 \\frac{\\mu}{\\mu + \\nu} H(\\nu) \\dnu.\n", |
| 646 | + "$$\n", |
| 647 | + "\n", |
| 648 | + "Integrating both sides of the alternative formulation yields\n", |
| 649 | + "$$\n", |
| 650 | + "\\| H \\|_1 =\n", |
| 651 | + "1 + \\frac{c}{2} \\int_0^1 \\int_0^1 H(\\mu) H(\\nu) \\frac{\\mu}{\\mu + \\nu} \\dnu.\n", |
| 652 | + "$$\n", |
| 653 | + "Since $\\mu$ and $\\nu$ are variables of integration, we may interchange\n", |
| 654 | + "them to obtain\n", |
| 655 | + "$$\n", |
| 656 | + "\\| H \\|_1 =\n", |
| 657 | + "1 + \\frac{c}{2} \\int_0^1 \\int_0^1 H(\\mu) H(\\nu) \\frac{\\nu}{\\mu + \\nu} \\dnu.\n", |
| 658 | + "$$\n", |
| 659 | + "When we average the two equations we obtain\n", |
| 660 | + "$$\n", |
| 661 | + "\\| H \\|_1 =\n", |
| 662 | + "1 + \\frac{c}{4} \\| H \\|_1^2.\n", |
| 663 | + "$$\n", |
| 664 | + "So\n", |
| 665 | + "$$\n", |
| 666 | + "\\| H \\|_1 = \\frac{1 \\pm \\sqrt{1 - c}}{c/2}.\n", |
| 667 | + "$$\n", |
| 668 | + "\n", |
| 669 | + "As we said in Chapter __2__, the H-equation has two solutions\n", |
| 670 | + "for $0 < c < 1$. The\n", |
| 671 | + "__lower branch__, where $\\| H \\|_1 = \\frac{1 - \\sqrt{1 - c}}{c/2}$\n", |
| 672 | + "is the solution of physical interest and the one you're likely to find\n", |
| 673 | + "with any iteration. In this section we will explore computation of the\n", |
| 674 | + "__upper branch__, where $\\| H \\|_1 = \\frac{1 + \\sqrt{1 - c}}{c/2}$.\n", |
| 675 | + "\n", |
| 676 | + "The formula for the $L^1$ norm implies that the $H$-equation has no real\n", |
| 677 | + "solutions for $c > 1$. This implies that the Frechet\n", |
| 678 | + "derivative\n", |
| 679 | + "$\\calf'$ of $\\calf$ must be singular. The solution path cannot stop\n", |
| 680 | + "abruptly <cite data-cite=\"crandall\"><a href=\"siamfa.html#crandall\">(CR71)</cite>,\n", |
| 681 | + "so there must be an upper\n", |
| 682 | + "branch. The formula for the $L^1$ norm implies that $\\| H \\|_1 \\to \\infty$\n", |
| 683 | + "on the upper branch.\n", |
| 684 | + "\n", |
| 685 | + "We will briefly consider the details of the singularity before\n", |
| 686 | + "following the path. We begin by showing that $\\calf'(H)$ is nonsingular\n", |
| 687 | + "for $0 \\le c < 1$ on the lower branch. To simplify the analysis we define\n", |
| 688 | + "the linear operator $\\call$ on $C[0,1]$ by\n", |
| 689 | + "$$\n", |
| 690 | + "(\\call u)(\\mu) = \\int_0^1 \\frac{\\mu u(\\nu)}{\\mu + \\nu} \\dnu\n", |
| 691 | + "$$\n", |
| 692 | + "and express the $H$-equation as\n", |
| 693 | + "$$\n", |
| 694 | + "H = \\frac{1}{1 - (c/2) \\call H}\n", |
| 695 | + "$$\n", |
| 696 | + "where the division is understood to be pointwise. Now\n", |
| 697 | + "note that for $u \\in C[0,1]$,\n", |
| 698 | + "$$\n", |
| 699 | + "\\calf'(H) u = u - \\frac{(c/2) \\call u}{(1 - (c/2) \\call H)^2}\n", |
| 700 | + " = u - H^2 (c/2) \\call u.\n", |
| 701 | + "$$\n", |
| 702 | + "Here we use, as we have before, the simple trick to compute a Frechet\n", |
| 703 | + "derivative\n", |
| 704 | + "$$\n", |
| 705 | + "\\calf'(H)u = \\frac{d}{d \\epsilon} \\calf(H + \\epsilon u)\n", |
| 706 | + "\\bigg|_{\\epsilon = 0 }.\n", |
| 707 | + "$$\n", |
| 708 | + "Since $\\calf'$ is the sum of a compact operator and the identity, it is\n", |
| 709 | + "singular only if $0$ is an eigenvector. So singularity of $\\calf'$ is\n", |
| 710 | + "equivalent to $\\calg'(H)$ having $\\lambda = 1$ as an eigenvalue.\n", |
| 711 | + " \n", |
| 712 | + "When $c = 1$, the Perron theorem\n", |
| 713 | + "<cite data-cite=\"karlin\"><a href=\"siamfa.html#karlin\">(Kar59)</cite>\n", |
| 714 | + "and the positivity of the\n", |
| 715 | + "$H$-function imply that the largest eigenvalue in absolute value\n", |
| 716 | + "of $\\calg'(H)$ is positive and the corresponding eigenfunction\n", |
| 717 | + "does not change sign, and hence can be taken as\n", |
| 718 | + "non-negative. That eigenvalue is $\\lambda = 1$ and the eigenfunction\n", |
| 719 | + "is $u(\\mu) = \\mu H(\\mu)$. To see this use the formula for the $L^1$ norm and compute,\n", |
| 720 | + "with $\\| H \\|_1 = 2$,\n", |
| 721 | + "$$\n", |
| 722 | + "\\begin{array}{ll}\n", |
| 723 | + "\\calg'(H)(u)(\\mu) & = H^2(\\mu) (1/2) \\int_0^1 \\frac{\\mu \\nu H(\\nu)}{\\mu + \\nu}\n", |
| 724 | + "\\dnu \\\\\n", |
| 725 | + "\\\\\n", |
| 726 | + "& = (\\mu H(\\mu)) H(\\mu) (1/2) \\int_0^1 \\frac{\\nu H(\\nu)}{\\mu + \\nu} \\dnu \\\\\n", |
| 727 | + "\\\\\n", |
| 728 | + "& = u(\\mu) H(\\mu) (1/2) \\int_0^1 H(\\nu) (1 - \\frac{\\mu}{\\mu + \\nu} ) \\dnu \\\\\n", |
| 729 | + "\\\\\n", |
| 730 | + "& = u(\\mu) \\left( H(\\mu) - (1/2) (H \\call H)(\\mu) \\right) = u(\\mu)\n", |
| 731 | + "\\end{array}\n", |
| 732 | + "$$\n", |
| 733 | + "Since $u \\ge 0$, $\\lambda = 1$ is the Perron eigenvalue. Therefore\n", |
| 734 | + "the eigenvalue has multiplicity one.\n", |
| 735 | + "\n", |
| 736 | + "The Perron theory is also applicable if $0 < c < 1$. Let\n", |
| 737 | + "$\\lambda > 0$ be the Perron eigenvalue of\n", |
| 738 | + "$\\calg'(H)$ with eigenfunction $u$. Set $u(\\mu) = \\mu H(\\mu) p(\\mu)$.\n", |
| 739 | + "Then\n", |
| 740 | + "$$\n", |
| 741 | + "\\begin{array}{ll}\n", |
| 742 | + "\\lambda p(\\mu) & = H(\\mu) (c/2) \\int_0^1\n", |
| 743 | + "\\frac{H(\\nu) p(\\nu) \\nu}{\\mu + \\nu} \\dnu\n", |
| 744 | + "\\le \\| p \\|_\\infty H(\\mu) (c/2) \\int_0^1 \\frac{H(\\nu) \\nu}{\\mu + \\nu} \\dnu\\\\\n", |
| 745 | + "\\\\\n", |
| 746 | + "& \\le \\| p \\|_\\infty H(\\mu) (c/2)\n", |
| 747 | + "\\int_0^1 H(\\nu) \\left(1 - \\frac{\\mu}{\\mu + \\nu} \\right) \\dnu\n", |
| 748 | + "= \\| p \\|_\\infty H(\\mu) (1 - \\sqrt{1-c} ) - (H(\\mu) - 1)\\\\\n", |
| 749 | + "\\\\\n", |
| 750 | + "& = \\| p \\|_\\infty (1 - H(\\mu) \\sqrt{1-c} )\n", |
| 751 | + "\\le \\| p \\|_\\infty (1 - \\sqrt{1-c})\n", |
| 752 | + "\\end{array}\n", |
| 753 | + "$$\n", |
| 754 | + "Hence, taking the $L^\\infty$ norm of the left side of \\eqnok{lambdaest},\n", |
| 755 | + "we have\n", |
| 756 | + "$$\n", |
| 757 | + "\\lambda \\le 1 - \\sqrt{1-c} < 1.\n", |
| 758 | + "$$\n", |
| 759 | + "Hence $\\calf'(H)$ is nonsingular for $0 < c < 1$ on the lower branch.\n", |
| 760 | + "This also proves the norm estimate from Chapter __4__.\n" |
| 761 | + ] |
| 762 | + }, |
613 | 763 | {
|
614 | 764 | "cell_type": "code",
|
615 | 765 | "execution_count": null,
|
|
0 commit comments