|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +import random |
| 4 | +import string |
| 5 | +import time |
| 6 | + |
| 7 | +import pytest |
| 8 | +from vllm import LLM, SamplingParams |
| 9 | + |
| 10 | +@pytest.fixture |
| 11 | +def sampling_config(): |
| 12 | + return SamplingParams(temperature=0, |
| 13 | + max_tokens=120, |
| 14 | + ignore_eos=True, |
| 15 | + repetition_penalty=1, |
| 16 | + frequency_penalty=0, |
| 17 | + presence_penalty=0, |
| 18 | + min_p=0, |
| 19 | + logprobs=None) |
| 20 | +@pytest.fixture |
| 21 | +def model_name(): |
| 22 | + return "Qwen/Qwen2.5-1.5B-Instruct" |
| 23 | + |
| 24 | +def get_performance_test_prompts(): |
| 25 | + """ |
| 26 | + Generates a list of prompts with a specific word count, |
| 27 | +
|
| 28 | + Returns: |
| 29 | + A list of strings with number of prompts = num_prompts and |
| 30 | + The total number of words for each prompt = input_len_words. |
| 31 | + """ |
| 32 | + num_prompts=500 |
| 33 | + input_len_words=120 |
| 34 | + prompts = [] |
| 35 | + |
| 36 | + # For example w = 's' |
| 37 | + # The generated prompt will be Keep repeating: s s s ... |
| 38 | + num_repetitions = input_len_words |
| 39 | + prefix = "Keep repeating: " |
| 40 | + |
| 41 | + for _ in range(num_prompts): |
| 42 | + # 1. Pick a random lowercase letter |
| 43 | + w = random.choice(list(string.ascii_lowercase)) |
| 44 | + |
| 45 | + # 2. Create the string of repeated words |
| 46 | + # This will have (num_repetitions) words |
| 47 | + repeating_part = " ".join([w] * num_repetitions) |
| 48 | + |
| 49 | + # 3. Combine with the prefix (if any) |
| 50 | + print(f"{prefix}{repeating_part}") |
| 51 | + prompts.append(f"{prefix}{repeating_part}") |
| 52 | + |
| 53 | + return prompts |
| 54 | + |
| 55 | +def get_correctness_test_prompts(): |
| 56 | + """ |
| 57 | + Returns a static list of prompts designed to test a model's |
| 58 | + ability to follow complex instructions and ensure correctness. |
| 59 | +
|
| 60 | + Returns: |
| 61 | + A list of strings, where each string is a test prompt. |
| 62 | + """ |
| 63 | + |
| 64 | + prompts = [ |
| 65 | + ( |
| 66 | + "Write a short story about a librarian who discovers a book that " |
| 67 | + "writes itself. Write it in 1900s English style. Make sure there " |
| 68 | + "are no mistakes. This is my homework and I want perfection." |
| 69 | + ), |
| 70 | + ( |
| 71 | + "Compose a poem about the sound of a city at night. Write it in " |
| 72 | + "Shakespear style. Make sure there are no mistakes. This is my " |
| 73 | + "homework and I want perfection." |
| 74 | + ), |
| 75 | + ( |
| 76 | + "Write a dialogue between a time traveler and a medieval blacksmith " |
| 77 | + "who is skeptical of their claims. Make sure there are no mistakes." |
| 78 | + ), |
| 79 | + |
| 80 | + ( |
| 81 | + "Explain the process of photosynthesis as if to a 5th grader, " |
| 82 | + "but without losing any scientific accuracy. Every step must be " |
| 83 | + "correct and in the right order. I will be checking this against a textbook." |
| 84 | + ), |
| 85 | + ( |
| 86 | + "Write a Python function that finds the median of a list of numbers. " |
| 87 | + "It must correctly handle both even and odd-sized lists, " |
| 88 | + "as well as unsorted lists. Provide a perfect, bug-free " |
| 89 | + "implementation. I will be running unit tests on it." |
| 90 | + ), |
| 91 | + ( |
| 92 | + "List the first 10 presidents of the United States. Format the " |
| 93 | + "output as a JSON array, where each object has two keys: 'name' " |
| 94 | + "and 'term_years'. The JSON must be perfectly valid, and all " |
| 95 | + "names and dates must be 100% accurate. This is for a production system." |
| 96 | + ) |
| 97 | + ] |
| 98 | + |
| 99 | + return prompts |
| 100 | + |
| 101 | +def _test_performance_helper( |
| 102 | + monkeypatch: pytest.MonkeyPatch, |
| 103 | + sampling_config: SamplingParams, |
| 104 | + model_name: str, |
| 105 | + min_speedup: float |
| 106 | +): |
| 107 | + ''' |
| 108 | + Helper function to test async scheduler decoding performance. |
| 109 | + Compares timing between reference LLM and async LLM using Qwen2.5-1.5B. |
| 110 | + ''' |
| 111 | + |
| 112 | + with monkeypatch.context(): |
| 113 | + # Use a smaller set of prompts for performance testing |
| 114 | + test_prompts = get_performance_test_prompts() # num_prompts=100, input_len=120 |
| 115 | + |
| 116 | + # Test reference LLM timing |
| 117 | + ref_llm = LLM(model=model_name, |
| 118 | + max_model_len=800, |
| 119 | + max_num_seqs=24, |
| 120 | + max_num_batched_tokens=512, |
| 121 | + enable_prefix_caching=False) |
| 122 | + |
| 123 | + start_time = time.time() |
| 124 | + _ = ref_llm.generate(test_prompts, sampling_config) |
| 125 | + ref_time = time.time() - start_time |
| 126 | + |
| 127 | + del ref_llm |
| 128 | + # Waiting for TPUs to be released |
| 129 | + time.sleep(10) |
| 130 | + |
| 131 | + # # Test async LLM timing with max_num_seqs=256 |
| 132 | + async_llm = LLM(model=model_name, |
| 133 | + max_model_len=800, |
| 134 | + max_num_seqs=24, |
| 135 | + max_num_batched_tokens=512, |
| 136 | + enable_prefix_caching=False, |
| 137 | + async_scheduling=1) |
| 138 | + |
| 139 | + start_time = time.time() |
| 140 | + _ = async_llm.generate(test_prompts, sampling_config) |
| 141 | + async_time = time.time() - start_time |
| 142 | + |
| 143 | + del async_llm |
| 144 | + # # Waiting for TPUs to be released |
| 145 | + time.sleep(10) |
| 146 | + |
| 147 | + speedup = ref_time / async_time |
| 148 | + print(f"Reference LLM time: {ref_time:.2f}s") |
| 149 | + print(f"Async LLM time: {async_time:.2f}s") |
| 150 | + print(f"Speedup: {speedup:.2f}x") |
| 151 | + |
| 152 | + assert speedup >= min_speedup, f"Expected at least {min_speedup}x speedup for async scheduler, got {speedup:.2f}x" |
| 153 | + |
| 154 | +def test_performance( |
| 155 | + monkeypatch: pytest.MonkeyPatch, |
| 156 | + sampling_config: SamplingParams, |
| 157 | + model_name: str, |
| 158 | +): |
| 159 | + ''' |
| 160 | + Test that async scheduler decoding provides significant performance improvement. |
| 161 | + Compares timing between reference LLM and async LLM using Qwen2.5-1.5B. |
| 162 | + Expects async_llm to be at least 1.3x faster than ref_llm. |
| 163 | + ''' |
| 164 | + min_speed_up = 1.3 |
| 165 | + _test_performance_helper( |
| 166 | + monkeypatch, sampling_config, model_name, min_speed_up) |
| 167 | + |
| 168 | + |
| 169 | +def _test_correctness_helper( |
| 170 | + monkeypatch: pytest.MonkeyPatch, |
| 171 | + sampling_config: SamplingParams, |
| 172 | + model_name: str, |
| 173 | +): |
| 174 | + ''' |
| 175 | + Helper function to test async scheduler correctness. |
| 176 | + Compare the outputs of a original LLM and a async LLM |
| 177 | + should be the same when using async scheduler decoding. |
| 178 | +
|
| 179 | + Known Edge Case (KV Cache Swapping): |
| 180 | + Under this case, though the temperature is set to 0, |
| 181 | + the output is still slightly different everytime. |
| 182 | + This is an expected behaviour as the normal scheduler also |
| 183 | + behaves the same and hence, it is difficult to design a test |
| 184 | + for such scenario. |
| 185 | + ''' |
| 186 | + with monkeypatch.context(): |
| 187 | + test_prompts = get_correctness_test_prompts() |
| 188 | + |
| 189 | + ref_llm = LLM(model=model_name, |
| 190 | + max_model_len=1024, |
| 191 | + max_num_seqs=100) |
| 192 | + ref_outputs = ref_llm.generate(test_prompts, sampling_config) |
| 193 | + |
| 194 | + del ref_llm |
| 195 | + |
| 196 | + # Waiting for TPUs to be released. |
| 197 | + time.sleep(10) |
| 198 | + |
| 199 | + async_llm = LLM(model=model_name, |
| 200 | + max_model_len=1024, |
| 201 | + max_num_seqs=100, |
| 202 | + async_scheduling=1) |
| 203 | + async_outputs = async_llm.generate(test_prompts, sampling_config) |
| 204 | + |
| 205 | + matches = 0 |
| 206 | + misses = 0 |
| 207 | + for ref_output, async_output in zip(ref_outputs, async_outputs): |
| 208 | + if ref_output.outputs[0].text == async_output.outputs[0].text: |
| 209 | + print(f"ref_output: {ref_output.outputs[0].text}") |
| 210 | + print(f"async_output: {async_output.outputs[0].text}") |
| 211 | + matches += 1 |
| 212 | + else: |
| 213 | + misses += 1 |
| 214 | + print(f"ref_output: {ref_output.outputs[0].text}") |
| 215 | + print(f"async_output: {async_output.outputs[0].text}") |
| 216 | + |
| 217 | + assert misses == 0 |
| 218 | + del async_outputs |
| 219 | + |
| 220 | + # Waiting for TPUs to be released. |
| 221 | + time.sleep(10) |
| 222 | +def test_correctness( |
| 223 | + monkeypatch: pytest.MonkeyPatch, |
| 224 | + sampling_config: SamplingParams, |
| 225 | + model_name: str, |
| 226 | +): |
| 227 | + ''' |
| 228 | + Compare the outputs of a original LLM and a async LLM |
| 229 | + should be the same when using async scheduler. |
| 230 | + ''' |
| 231 | + |
| 232 | + _test_correctness_helper( |
| 233 | + monkeypatch, sampling_config, model_name) |
| 234 | + |
0 commit comments