From 0eab8ea4d3a7c5763ed6f37da0401c9a4f8fe7fb Mon Sep 17 00:00:00 2001 From: Jingbin Wang <145735287+Wjbbbbb@users.noreply.github.com> Date: Tue, 17 Sep 2024 12:34:23 +0800 Subject: [PATCH] Update channels.md MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit 要遍历第0个维度,如果直接zip(X, K)的话,corr2d()依次读取到X和K的第0和1个维度,对X[i]中的两个矩阵和K[i]中的两个矩阵进行卷积运算,这样会导致出现'''ValueError: too many values to unpack (expected 2)'''这样的错误,因此,要对X和K加上下标0 --- chapter_convolutional-neural-networks/channels.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/chapter_convolutional-neural-networks/channels.md b/chapter_convolutional-neural-networks/channels.md index 86caaf2ae..8fa3ff775 100644 --- a/chapter_convolutional-neural-networks/channels.md +++ b/chapter_convolutional-neural-networks/channels.md @@ -45,7 +45,7 @@ import paddle #@tab mxnet, pytorch, paddle def corr2d_multi_in(X, K): # 先遍历“X”和“K”的第0个维度(通道维度),再把它们加在一起 - return sum(d2l.corr2d(x, k) for x, k in zip(X, K)) + return sum(d2l.corr2d(x, k) for x, k in zip(X[0], K[0])) ``` ```{.python .input}