-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreport_creater.py
471 lines (429 loc) · 19.1 KB
/
report_creater.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
#%%
#%load_ext autoreload
#%autoreload 2
import os
import os.path
import sys
from datetime import timedelta
from datetime import datetime as dtm
from datetime import date as dt
from pprint import pprint as pp
import pandas as pd
import numpy as np
import traceback
from functools import partial
pd.options.display.expand_frame_repr = False
for path in ['./mylib','./mylib/reports','./mylib/download_data']:
sys.path.append(os.path.abspath(path))
from bd import DownloadOrdersFromBd
from defs import *
from happy_hours import StratByHours
from reports_defs import Beauty
import warnings
warnings.filterwarnings('ignore')
#%%
class Analitics(Beauty):
def __init__(self,df,tasks_df=None):
self.df = df
self.tasks_df = tasks_df
def createAnalitics(self,group_column,need_metrics=False):
self.need_metrics = need_metrics
self.group_column = group_column
self.groupStrat()
self.groupDaily()
self.calcNonProfitDays()
self.joinReports()
self.changeColumnsOrder()
self.df_report = self.df_report.fillna(0)
def groupDaily(self):
'''группировка по дням'''
#perc95 = partial(np.percentile, q=95)
query = {'rate': pd.NamedAgg(column = 'profit', aggfunc = 'sum'),
#'max_orders_in_net': pd.NamedAgg(column = 'orders_in_net', aggfunc = 'max'),
#'95_orders_in_net': pd.NamedAgg(column = 'orders_in_net', aggfunc = perc95),
'cnt': pd.NamedAgg(column = 'profit', aggfunc = 'count'),
'usd': pd.NamedAgg(column = 'profit_usd', aggfunc = 'sum'),
'pr_plus': pd.NamedAgg(column = 'pr_plus', aggfunc = 'sum'),
'pr_minus': pd.NamedAgg(column = 'pr_minus', aggfunc = 'sum'),
}
df_agg = self.df.groupby(['date',self.group_column]).agg(**query)
df_agg['pr_factor'] = round(df_agg['pr_plus'] / df_agg['pr_minus'],2).abs()
df_agg.loc[df_agg['pr_minus']==0,'pr_factor'] = 10
#df_agg = df_agg.drop(['rate'], 1)
df_agg = self.makeBeauty(df_agg)
#df_agg = df_agg.unstack(0)
#cols = df_agg.columns.tolist()
cols = ['cnt','pr_factor','usd','rate',]#'95_orders_in_net','max_orders_in_net',
df_agg = df_agg[cols]
self.df_daily = df_agg
def calcNonProfitDays(self):
df = self.df_daily.copy()
df.reset_index(inplace=True)
df = df[df['rate']<0]
query = {'rate': pd.NamedAgg(column = 'rate', aggfunc = 'sum'),
'cnt': pd.NamedAgg(column = 'rate', aggfunc = 'count'),
}
df_agg = df.groupby([self.group_column]).agg(**query)
df_agg.columns = ['non_profit_sum','non_profit_days']
self.non_profit_df = df_agg#.reset_index()
self.len_agg += 2
def calcNonProfPercent(self):
if len(self.df_report) == 0:
return
df = self.df_report
df.loc[df['non_profit_sum'].isnull(),'non_profit_days']=0.1
df.loc[df['non_profit_sum'].isnull(),'non_profit_sum']=0.1
df.loc[df['rate']!=0,'non_prof_k'] = (df['non_profit_sum'] / df['rate']).\
round(1)
df.loc[df['non_prof_k']>0,'non_prof_k'] = -10
df.loc[df['non_prof_k']<-1,'non_prof_k'] = -1
self.len_agg += 1
def joinReports(self):
self.df_report = pd.merge(self.df_report,self.non_profit_df,
on=self.group_column,how='left')
self.calcNonProfPercent()
self.df_report = pd.merge(self.df_report, self.df_daily.unstack(0),
on=self.group_column,how='left').\
sort_values(by=['rate'], ascending=False)
self.df_report = self.df_report.fillna(0)
for c in self.df_report.columns:
if 'cnt' in c:
self.df_report[c] = self.df_report[c].astype(int)
def changeColumnsOrder(self):
cols = list(self.df_report.columns.values)
num = self.len_agg
new_col = cols[:num] + cols[-1:num-1:-1]
self.df_report = self.df_report[new_col]
#self.df_report.set_index(new_col, inplace=True)
#self.df_report.reset_index(inplace=True)
def addMetricsRuntimeAndDelta(self,df_agg):
cols = ['SLoss','SL_plus','SellPr','BVSV','SellLvl','Trail','PrDown','FiltCheck','NoData']
metr = ['runtime','c1m','c5m','c15m','btc1m','btc5m']
for index,row in df_agg.iterrows():
part_df = self.df[self.df['strat']==row['strat']]
for m in metr:
for c in cols:
segm = part_df.loc[(part_df[c]==1) & (part_df[m]>0)]
val = segm[m].mean() if len(segm)>0 else 0
col_name = f'{m},{c}'
df_agg.loc[index,col_name] = round(val,2)
return df_agg
def groupStrat(self):
'''группировка за весь период'''
#perc98 = partial(np.percentile, q=98)
query = {
'type': pd.NamedAgg(column = 'type', aggfunc = 'max'),
'is_short': pd.NamedAgg(column = 'is_short', aggfunc = 'max'),
'size': pd.NamedAgg(column = 'osize', aggfunc = 'max'),
'age': pd.NamedAgg(column = 'age', aggfunc = 'max'),
'active': pd.NamedAgg(column = 'active', aggfunc = 'max'),
#'98_orders_in_net': pd.NamedAgg(column = 'orders_in_net', aggfunc = perc98),
'sp': pd.NamedAgg(column = 'strat_path', aggfunc = 'max'),
'joinkey': pd.NamedAgg(column = 'joinkey', aggfunc = 'max'),
'tr_key': pd.NamedAgg(column = 'tr_key', aggfunc = 'max'),
'tr_b_key': pd.NamedAgg(column = 'tr_b_key', aggfunc = 'max'),
'rate': pd.NamedAgg(column = 'profit', aggfunc = 'sum'),
'usd':pd.NamedAgg(column = 'profit_usd', aggfunc = 'sum'),
'cnt': pd.NamedAgg(column = 'profit', aggfunc = 'count'),
'cnt_plus': pd.NamedAgg(column = 'pr_plus', aggfunc = 'count'),
'cnt_minus': pd.NamedAgg(column = 'pr_minus', aggfunc = 'count'),
'pr_plus': pd.NamedAgg(column = 'pr_plus', aggfunc = 'sum'),
'pr_minus': pd.NamedAgg(column = 'pr_minus', aggfunc = 'sum'),
'runtime': pd.NamedAgg(column = 'runtime', aggfunc = 'mean'),
'SL_plus': pd.NamedAgg(column = 'SL_plus', aggfunc = 'count'),
}
reasons = list(self.df['sell_reason'].unique())
reasons.append('SL_plus')
for reason in reasons:
query[reason] = pd.NamedAgg(column = reason, aggfunc = 'count')
df_agg = self.df.groupby(self.group_column).agg(**query).reset_index()
if self.group_column == 'strat':
query = {
'task': pd.NamedAgg(column = 'task_quantity', aggfunc = 'sum'),
}
df_agg_task = self.tasks_df.groupby(self.group_column).agg(**query).reset_index()
df_agg = pd.merge(df_agg, df_agg_task, on=self.group_column, how='left').reset_index(drop=True)
df_agg['1_order'] = round(df_agg['rate'] / df_agg['cnt'],1)
df_agg['pr_factor'] = round(df_agg['pr_plus'] / df_agg['pr_minus'],2).abs()
df_agg.loc[df_agg['pr_minus']==0,'pr_factor'] = 10
df_agg['loss_avg'] = round(df_agg['pr_minus'] / df_agg['cnt_minus'],2)
#df_agg['q_index'] = round(df_agg['cnt_plus'] / df_agg['cnt'],1)
for col in reasons:
df_agg[col] = (df_agg[col] / df_agg['cnt'] *100).astype(int)
df_agg['runtime'] = df_agg['runtime'].astype(int)
if 'strat' in df_agg.columns:
for index,row in df_agg.iterrows():
part_df = self.df[self.df['strat']==row['strat']]
bots = part_df['bot'].unique()
df_agg.loc[index,'bot'] = ','.join(bots)
if self.need_metrics == True:
df_agg = self.addMetricsRuntimeAndDelta(df_agg)
else:
df_agg['bot'] = ''
df_agg = df_agg.sort_values(by=['rate'], ascending=False)
#df_agg = df_agg.drop(['cnt'], 1)
df_agg = df_agg.drop(['pr_plus','cnt_plus','pr_minus'], 1)#,'cnt_minus'
self.len_agg = len(df_agg.columns)
self.df_report = self.makeBeauty(df_agg)
class Review(Analitics):
def __init__(self,df):
self.df = df
def createReview(self,group_column='bot'):
self.group_column = group_column
self.groupData()
self.reviewToStr()
def groupData(self):
'''группировка'''
query = {
'rate': pd.NamedAgg(column = 'profit', aggfunc = 'sum'),
'usd':pd.NamedAgg(column = 'profit_usd', aggfunc = 'sum'),
}
df_agg = self.df.groupby(self.group_column).agg(**query).reset_index()
#df_agg['pr_factor'] = round(df_agg['pr_plus'] / df_agg['rate'],1)
df_agg = df_agg.sort_values(by=['bot'], ascending=True)
#df_agg = df_agg.drop(['pr_plus'], 1)
self.df_report = self.makeBeauty(df_agg)
def reviewToStr(self):
rows_len = [15,10]#,10
columns = ['bot','usd']#,'rate'
min_usd = 5
def createRow(rows_len,txt):
row = ''
for i,rl in enumerate(rows_len):
val = str(txt[i]).ljust(rl)
row = f'{row}|{val}' if row != '' else val
row = f'{row}\n'
return row
self.review_txt = createRow(rows_len,columns)
for _,row in self.df_report.iterrows():
if abs(row['usd']) < min_usd:
continue
vals = [row[col] for col in columns]
self.review_txt += createRow(rows_len,vals)
vals = ['Total',self.df_report['usd'].sum(),'']
self.review_txt += createRow(rows_len,vals)
class Analitics2():
def __init__(self,df,report_strat,report_coin):
self.df = df
self.r_strat = report_strat
self.r_coin = report_coin
def createReportsCoinsInStrat(self):
df = self.df
coins_report = pd.DataFrame(columns=self.r_coin.columns)
for strat in self.r_strat['strat'].unique():
strat_row = self.r_strat[self.r_strat['strat'] == \
strat]
df_cut = df[df['strat'] == strat]
an = Analitics(df_cut)
an.createAnalitics('coin')
coin = an.df_report.sort_values(by=['rate'], ascending=False)
coin['strat'] = strat
coin['bot'] = strat_row['bot'].values[0]
#strat_row.loc[0,'bot']
coins_report = pd.concat([coins_report,coin,strat_row])
coins_report['coin'].fillna('All_coins', inplace=True)
coins_report.fillna(0, inplace=True)
cols = coins_report.columns
cols = cols.insert(0,'strat')
cols = cols[:-1]
self.df_report = coins_report[cols]
class GetInfo(Analitics):
def __init__(self,settings,telegram_id=None):
self.telegram_id = telegram_id
self.settings = settings
def createHourlyReport(self):
d = DownloadOrdersFromBd(self.settings,self.telegram_id)
d.downloadDataset()
self.df = d.df
self.df['pr_plus'] = self.df['profit']
self.df.loc[(self.df['profit'] < 0), 'pr_plus'] = 0
if len(d.df) == 0:
print('len(d.df) == 0')
self.hourly_reports = {}
return
self.an = StratByHours(d.df,self.settings)
self.an.createReport()
self.hourly_reports = self.an.df_report
time_line = self.settings['time_line']
if 'duration' in self.settings:
dur = self.settings['duration']
dur_txt = f'. duration {dur}'
else:
dur_txt = ''
#self.hourly_report.loc['total','strat'] = f'Total. {time_line} d{dur_txt}'
self.len_agg = 3
def getRawData(self):
self.settings_xls = {'hidden_columns':[]}
d = DownloadOrdersFromBd(self.settings,self.telegram_id)
d.downloadDataset()
df = d.df
if len(df) == 0:
return
for date in ['buy_date','close_date']:
df[date] = df[date].dt.strftime('%d.%m.%Y %H:%M:%S')
#df.loc[(~df[date].isnull()),date] = df[date].dt.strftime('%d.%m.%Y %H:%M')
hide_cols = ['joinkey','tr_key','tr_b_key','btc5m','btc1m','c15m','c5m',
'c1m','base_coin','site','market_type','type','is_short','bd_row_id']
df['profit'] = df['profit'] * 10
for index,col in enumerate(list(df.columns)):
if col in hide_cols:
self.settings_xls['hidden_columns'].append(index)
self.df = df
def createReview(self):
'''краткая информация по ботам'''
d = DownloadOrdersFromBd(self.settings,self.telegram_id)
d.downloadDataset()
an = Review(d.df)
an.createReview('bot')
self.review_txt = an.review_txt
def createReports(self):
self.createReportList()
d = DownloadOrdersFromBd(self.settings,self.telegram_id)
d.downloadDataset()
try:
d.formatDf()
except:
pass
self.df = d.df
d.settings['strategy__in'] = list(self.df['strategy__id'].unique())
d.getOrdersTask()
self.tasks_df = d.tasks_df
self.createDataInterval()
self.report = {}
self.d = d
self.an = Analitics(self.df,d.tasks_df)
for report_type in self.report_list:
if report_type == 'strat' and 'coin' not in self.report_list:
need_metrics = self.settings['need_metrics']
else:
need_metrics = False
self.an.createAnalitics(report_type,need_metrics)
self.report[report_type] = self.an.df_report
self.len_agg = self.an.len_agg
if 'coin_strat' in self.settings['need_reports']:
an = Analitics2(
d.df,self.report['strat'],self.report['coin'])
an.createReportsCoinsInStrat()
self.report['coin_strat'] = an.df_report
print('Reports created!')
def createReportList(self):
self.report_list = []
if type(self.settings['need_reports']) == str:
self.settings['need_reports'] = [self.settings['need_reports']]
if self.settings['need_reports'] == ['all']:
self.settings['need_reports'] = ['strat','coin','coin_strat']
for r in ['strat','coin']:
if r in self.settings['need_reports']:
self.report_list.append(r)
def createDataInterval(self):
self.data_interval = '{} - {}'.format(
self.df['buy_date'].min().strftime('%d-%m %H:%M'),
self.df['buy_date'].max().strftime('%d-%m %H:%M'))
print(self.data_interval)
def showReport(self,report_type='strat',filter=None):
if not filter:
return self.report[report_type]
else:
f = self.report[report_type]
return f[f.index.str.contains(filter)]
class OverloadReport():
def __init__(self,settings):
#self.df = df
self.settings = settings
self.settings_xls = {'column_width':7}
def createReport(self):
self.downloadData()
self.transformDf()
self.dailyReport()
self.totalReport()
self.secReport()
self.mergeReport()
self.transformToPercent()
self.renameHeader()
def renameHeader(self):
new_cols = []
ren_dict = {'orders_10s':'10s','orders_1m':'1m','request':'r'}
for col in self.df_report.columns:
if type(col) == tuple:
c0 = col[0]
c1 = col[1]
if type(c1) == dt:
c1 = c1.strftime('%d.%m')
for n1,n2 in ren_dict.items():
if c0 == n1:
c0 = n2
col = f'{c0}{c1} %'
new_cols.append(col)
self.df_report.columns = new_cols
def transformToPercent(self):
for base_col in ['orders_10s','orders_1m','cpu']:
for col in self.df_report.columns:
if type(col) == tuple:
if col[0] == base_col:
try:
self.df_report[col] = self.df_report[col].fillna(0)
self.df_report[col].replace(np.inf,0,inplace=True)
self.df_report[col] = \
self.df_report[col] / self.df_report[base_col] * 100
#self.df_report.loc[self.df_report[col] < 1, col] = 0
self.df_report[col] = self.df_report[col].astype(int)
except:
pass
def downloadData(self):
d = DownloadOrdersFromBd(self.settings)
d.DownloadOverload()
self.df = d.df
def transformDf(self):
df = self.df
for col in ['cpu','request','orders_1m','orders_10s']:
df[col] = df[col].astype(int)
df.loc[df[col]<=89, col] = 0
df.loc[df[col]>89, col] = 1
df['sec'] = df['date'].dt.second
df['sec'] = df['sec']/10
df['sec'] = df['sec'].astype(int)*10
df['date'] = df['date'].dt.date#strftime('%d.%m')
self.df = df
def dailyReport(self):
df_agg = self.df.groupby(['date','bot__name'])['orders_1m','orders_10s','cpu'].sum()#'cpu','request',
self.df_daily = df_agg.unstack(0).reset_index()
def secReportOld(self):
df_agg = self.df.groupby(['sec','bot__name'])['orders_1m','request'].sum()
df_agg = df_agg[(df_agg['orders_1m'] > 0) | (df_agg['request'] > 0) ]
self.df_sec = df_agg.unstack(0).reset_index()
def secReport(self):
df_agg = self.df.groupby(['sec','bot__name'])['orders_1m'].sum()
df_agg = df_agg[(df_agg > 0)]
df_agg = df_agg.unstack(0).reset_index()
new_col = []
for col in df_agg.columns:
if type(col) != str:
col = ('orders_1m',col)
#f'1m{col}'
new_col.append(col)
df_agg.columns = new_col
self.df_sec = df_agg
def totalReport(self):
df_agg = self.df.groupby(['bot__name'])['cpu','request','orders_1m','orders_10s'].sum()
self.df_total = df_agg.reset_index()
def mergeReport(self):
df1 = pd.merge(self.df_total, self.df_sec, on='bot__name').reset_index(drop=True)
self.df_report = pd.merge(df1, self.df_daily, on='bot__name').reset_index(drop=True).\
sort_values(by=['orders_1m'], ascending=False)
#%%
if __name__ == "__main__":
settings = {
'time_line':5,
'need_reports':'all',
'time_line1':60,
'need_metrics':0,
'user_id':2,
'-telegram_id':299,
'strategy_names':['1123'],
}
r = GetInfo(settings)
#r.createHourlyReport()
#r.getRawData()
r.createReports()
#%%
# %%