-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgprfopt.py
637 lines (503 loc) · 24 KB
/
gprfopt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
from gprf import GPRF
from block_clustering import Blocker
from synthetic import sample_synthetic
from treegp.gp import GPCov, GP, mcov, prior_sample, dgaussian
from treegp.util import mkdir_p
import numpy as np
import scipy.stats
import scipy.optimize
import time
import os
import sys
import cPickle as pickle
import argparse
EXP_DIR = os.path.join(os.environ["HOME"], "gprf_experiments")
class SampledData(object):
def __init__(self,
noise_var=0.01, n=30, ntrain=20, lscale=0.5,
obs_std=0.05, yd=10, seed=1):
self.noise_var=noise_var
self.n = n
self.ntrain = ntrain
self.lscale=lscale
Xfull, Yfull, cov = sample_synthetic(n=n, noise_var=noise_var, yd=yd, lscale=lscale, seed=seed)
self.cov = cov
X, Y = Xfull[:ntrain,:], Yfull[:ntrain,:]
self.Xtest, self.Ytest = Xfull[ntrain:,:], Yfull[ntrain:,:]
self.SX, self.SY = X, Y
self.block_idxs = None
self.obs_std = obs_std
np.random.seed(seed)
self.X_obs = self.SX + np.random.randn(*X.shape)*obs_std
def set_centers(self, centers):
self.centers = np.asarray(centers)
b = Blocker(self.centers)
self.block_idxs = b.block_clusters(self.X_obs)
self.reblock = lambda X : b.block_clusters(X)
self.neighbors = b.neighbors(diag_connections=True)
def cluster_rpc(self, blocksize):
all_idxs = np.arange(self.ntrain)
cluster_idxs, splits = cluster_rpc(self.X_obs, all_idxs, target_size=blocksize)
self.block_idxs = cluster_idxs
self.reblock = lambda X: cluster_rpc(X, all_idxs, target_size=blocksize, fixed_split=splits)[0]
self.neighbors = None
def build_gprf(self, X=None, cov=None, local_dist=1e-4):
if X is None:
X = self.X_obs # self.SX
if cov is None:
cov = self.cov
noise_var = self.noise_var
elif cov.shape[0]==1:
noise_var = cov[0, 0]
cov = GPCov(wfn_params=[cov[0,1]], dfn_params=cov[0,2:], dfn_str="euclidean", wfn_str="se")
else:
raise Exception("invalid cov params %s" % (cov))
gprf = GPRF(X, Y=self.SY, block_fn = self.reblock,
block_idxs = self.block_idxs,
cov=cov, noise_var=noise_var,
kernelized=False,
neighbor_threshold=local_dist,
neighbors = self.neighbors if local_dist < 1.0 else [])
return gprf
def mean_distance(self, x):
X = x.reshape(self.SX.shape)
ds = np.linalg.norm(X-self.SX, axis=1)
return np.mean(ds)
def mean_abs_err(self, x):
return np.mean(np.abs(x - self.SX.flatten()))
def median_abs_err(self, x):
X = x.reshape(self.SX.shape)
R = X - self.SX
d = np.sqrt(np.sum(R**2, axis=1))
return np.median(d)
def lscale_error(self, FC):
true_lscale = self.cov.dfn_params[0]
inferred_lscale = FC[0, 2]
return inferred_lscale/true_lscale
def prediction_error_gp(self, x):
XX = x.reshape(self.X_obs.shape)
ntest = self.n-self.ntrain
ll = 0
gp = GP(X=XX, y=self.SY[:, 0:1], cov_main=self.cov, noise_var=self.noise_var,
sort_events=False, sparse_invert=False)
pred_cov = gp.covariance(self.Xtest, include_obs=True)
logdet = np.linalg.slogdet(pred_cov)[1]
pred_prec = np.linalg.inv(pred_cov)
for y, yt in zip(self.SY.T, self.Ytest.T):
gp.y = y
gp.alpha_r = gp.factor(y)
pred_means = gp.predict(self.Xtest)
rt = yt - pred_means
lly = -.5 * np.dot(rt, np.dot(pred_prec, rt))
lly += -.5 * logdet
lly += -.5 * ntest * np.log(2*np.pi)
ll += lly
return ll
def prediction_error(self, X=None, cov=None, local_dist=1.0):
gprf = self.build_gprf(X=X, cov=cov, local_dist=local_dist)
p = gprf.train_predictor()
test_blocks = self.reblock(self.Xtest)
def gaussian_ll(Y, M, C):
ntest, yd = Y.shape
P = np.linalg.inv(C)
R = Y-M
ll = -.5 * np.sum(P * np.dot(R, R.T))
ll -= .5 * yd * np.linalg.slogdet(C)[1]
ll -= .5 * yd * ntest * np.log(2*np.pi)
return ll
ll_block = 0
ll_block_diag = 0
se_block = 0
for idxs in test_blocks:
Xt = self.Xtest[idxs]
Yt = self.Ytest[idxs]
ntest, yd = Yt.shape
"""
for i in range(ntest):
xt = Xt[i:i+1,:]
yt = Yt[i:i+1,:]
m, c = p_local(xt, test_noise_var=sdata.noise_var)
ll_marginal += gaussian_ll(yt, m, c)
se_marginal += np.sum((yt-m)**2)
"""
PM, PC = p(Xt, test_noise_var=self.noise_var)
ll_block += gaussian_ll(Yt, PM, PC)
ll_block_diag += gaussian_ll(Yt, PM, np.diag(np.diag(PC)))
se_block += np.sum((Yt-PM)**2)
ntest, yd = self.Ytest.shape
Ymean = np.mean(self.SY, axis=0)
se_baseline = np.sum((self.Ytest - Ymean)**2)
smse = se_block / se_baseline
Ystd = np.std(self.SY, axis=0)
ll_baseline = np.sum([np.sum(scipy.stats.norm(loc=Ymean[i], scale=Ystd[i]).logpdf(self.Ytest[:, i])) for i in range(yd)])
mll_baseline = ll_baseline / (ntest * yd)
msll_block = ll_block / (ntest * yd) - mll_baseline
msll_block_diag = ll_block_diag / (ntest * yd) - mll_baseline
return smse, msll_block, msll_block_diag
def x_prior(self, xx):
flatobs = self.X_obs.flatten()
t0 = time.time()
n = len(xx)
r = (xx-flatobs)/self.obs_std
ll = -.5*np.sum( r**2)- .5 *n * np.log(2*np.pi*self.obs_std**2)
lderiv = np.array([-(xx[i]-flatobs[i])/(self.obs_std**2) for i in range(len(xx))]).flatten()
t1 = time.time()
return ll, lderiv
def x_prior_block(self, i, xx):
idxs = self.block_idxs[i]
flatobs = self.X_obs[idxs].flatten()
n = len(xx)
r = (xx-flatobs)/self.obs_std
ll = -.5*np.sum( r**2)- .5 *n * np.log(2*np.pi*self.obs_std**2)
lderiv = np.array([-(xx[i]-flatobs[i])/(self.obs_std**2) for i in range(len(xx))]).flatten()
return ll, lderiv
def random_init(self, jitter_std=None):
if jitter_std is None:
jitter_std = self.obs_std
return self.X_obs + np.random.randn(*self.X_obs.shape)*jitter_std
def sample_data(n, ntrain, lscale, obs_std, yd, seed,
centers, noise_var, rpc_blocksize=-1):
sample_basedir = os.path.join(os.environ["HOME"], "gprf_experiments", "synthetic_datasets")
mkdir_p(sample_basedir)
sample_fname = "%d_%d_%.6f_%.6f_%d_%d%s.pkl" % (n, ntrain, lscale, obs_std, yd, seed, "" if noise_var==0.01 else "_%.4f" % noise_var)
sample_fname_full = os.path.join(sample_basedir, sample_fname)
try:
with open(sample_fname_full, 'rb') as f:
sdata = pickle.load(f)
except IOError:
sdata = SampledData(n=n, ntrain=ntrain, lscale=lscale, obs_std=obs_std, seed=seed, yd=yd, noise_var=noise_var)
with open(sample_fname_full, 'wb') as f:
pickle.dump(sdata, f)
if centers is not None:
sdata.set_centers(centers)
else:
np.random.seed(seed)
sdata.cluster_rpc(rpc_blocksize)
return sdata
class OutOfTimeError(Exception):
pass
from gpy_shims import GPyConstDiagonalGaussian
def do_gpy_gplvm(d, gprf, X0, C0, sdata, method, maxsec=3600,
parallel=False, gplvm_type="bayesian", num_inducing=100):
import GPy
dim = sdata.SX.shape[1]
# adjust kernel lengthscale to match GPy's defn of the RBF kernel incl a -.5 factor
k = GPy.kern.RBF(dim, ARD=0, lengthscale=np.sqrt(.5)*sdata.lscale, variance=1.0)
if C0 is None:
k.lengthscale.fix()
k.variance.fix()
XObs = sdata.X_obs.copy()
p = GPyConstDiagonalGaussian(XObs.flatten(), sdata.obs_std**2)
if gplvm_type=="bayesian":
print "bayesian GPLVM with %d inducing inputs" % num_inducing
m = GPy.models.BayesianGPLVM(sdata.SY, dim, X=X0, X_variance = np.ones(XObs.shape)*sdata.obs_std**2, kernel=k, num_inducing=num_inducing)
#m.X.mean.set_prior(p)
elif gplvm_type=="sparse":
print "sparse non-bayesian GPLVM with %d inducing inputs" % num_inducing
m = GPy.models.SparseGPLVM(sdata.SY, dim, X=X0, kernel=k, num_inducing=num_inducing)
from GPy.core import Param
m.X = Param('latent_mean', X0)
m.link_parameter(m.X, index=0)
#m.X.set_prior(p)
elif gplvm_type=="basic":
print "basic GPLVM on full dataset"
m = GPy.models.GPLVM(sdata.SY, dim, X=XObs, kernel=k)
#m.X.set_prior(p)
m.likelihood.variance = sdata.noise_var
m.likelihood.variance.fix()
nmeans = X0.size
sstep = [0,]
f_log = open(os.path.join(d, "log.txt"), 'w')
t0 = time.time()
def llgrad_wrapper(xx):
XX = xx[:nmeans].reshape(X0.shape)
xd = X0.shape[1]
n_ix = num_inducing * xd
IX = xx[nmeans:nmeans+n_ix].reshape((-1, xd))
np.save(os.path.join(d, "step_%05d_X.npy" % sstep[0]), XX)
np.save(os.path.join(d, "step_%05d_IX.npy" % sstep[0]), IX)
ll, grad = m._objective_grads(xx)
prior_ll, prior_grad = sdata.x_prior(xx[:nmeans])
ll -= prior_ll
grad[:nmeans] -= prior_grad
if C0 is not None:
print "lscale", np.exp(xx[-1])
print "%d %.2f %.2f" % (sstep[0], time.time()-t0, -ll)
f_log.write("%d %.2f %.2f\n" % (sstep[0], time.time()-t0, -ll))
f_log.flush()
sstep[0] += 1
if time.time()-t0 > maxsec:
raise OutOfTimeError
return ll, grad
x0 = m.optimizer_array
bounds = None
try:
r = scipy.optimize.minimize(llgrad_wrapper, x0, jac=True, method=method, bounds=bounds, options = {"ftol": 1e-6, "maxiter": 200})
rx = r.x
except OutOfTimeError:
print "terminated optimization for time"
t1 = time.time()
f_log.write("optimization finished after %.fs\n" % (time.time()-t0))
f_log.close()
with open(os.path.join(d, "finished"), 'w') as f:
f.write("")
def do_optimization(d, gprf, X0, C0, sdata, method, maxsec=3600, parallel=False):
def cov_prior(c):
# near-uniform prior on (logscale) covariance params
mean = -1
std = 10
r = (c-mean)/std
ll = -.5*np.sum( r**2)- .5 *len(c) * np.log(2*np.pi*std**2)
lderiv = -(c-mean)/(std**2)
return ll, lderiv
def full_cov(C):
if C.shape[1] == 1:
# lscale
FC = np.empty((C0.shape[0], 2+sdata.X_obs.shape[1]))
FC[:, 0] = sdata.noise_var
FC[:, 1] = 1.0
FC[:, 2:3] = C
FC[:, 3:4] = C
elif C.shape[1] == 4:
FC = C
else:
raise Exception("unrecognized cov param shape")
return FC
def collapse_cov_grad(grad_FC):
if C0.shape[1] == 1:
# lscale
gradC = grad_FC[:, 2:3] + grad_FC[:, 3:4]
elif C0.shape[1] == 4:
gradC = grad_FC
else:
raise Exception("unrecognized cov param shape")
return gradC
gradX = (X0 is not None)
gradC = (C0 is not None)
if gradX:
x0 = X0.flatten()
else:
x0 = np.array(())
cov_scale = 5. # hack to better condition optimization of cov params
if gradC:
c0 = np.log(C0.flatten()) * cov_scale
else:
c0 = np.array(())
full0 = np.concatenate([x0, c0])
sstep = [0,]
f_log = open(os.path.join(d, "log.txt"), 'w')
t0 = time.time()
def lgpllgrad(x):
if time.time()-t0 > maxsec:
raise OutOfTimeError
xx = x[:len(x0)]
xc = x[len(x0):] / cov_scale
if gradX:
XX = xx.reshape(X0.shape)
gprf.update_X(XX)
np.save(os.path.join(d, "step_%05d_X.npy" % sstep[0]), XX)
if gradC:
C = np.exp(xc.reshape(C0.shape))
FC = full_cov(C)
print FC
gprf.update_covs(FC)
np.save(os.path.join(d, "step_%05d_cov.npy" % sstep[0]), FC)
ll, gX, gC = gprf.llgrad(local=True, grad_X=gradX, grad_cov=gradC,
parallel=parallel)
if gradX:
prior_ll, prior_grad = sdata.x_prior(xx)
ll += prior_ll
gX = gX.flatten() + prior_grad
if gradC:
prior_ll, prior_grad = cov_prior(xc)
ll += prior_ll
gC = (np.array(collapse_cov_grad(gC)) * C).flatten() + prior_grad
gC /= cov_scale
grad = np.concatenate([gX.flatten(), gC.flatten()])
print "%d %.2f %.2f" % (sstep[0], time.time()-t0, ll)
f_log.write("%d %.2f %.2f\n" % (sstep[0], time.time()-t0, ll))
f_log.flush()
sstep[0] += 1
return -ll, -grad
bounds = None
try:
print "optimizing with %s" % method
r = scipy.optimize.minimize(lgpllgrad, full0, jac=True, method=method, bounds=bounds, options={"ftol": 1e-6, "maxiter": 200})
rx = r.x
except OutOfTimeError:
print "terminated optimization for time"
t1 = time.time()
f_log.write("optimization finished after %.fs\n" % (time.time()-t0))
f_log.close()
with open(os.path.join(d, "finished"), 'w') as f:
f.write("")
def load_log(d):
log = os.path.join(d, "log.txt")
steps = []
times = []
lls = []
with open(log, 'r') as lf:
for line in lf:
try:
step, time, ll = line.split(' ')
steps.append(int(step))
times.append(float(time))
lls.append(float(ll))
except:
continue
return np.asarray(steps), np.asarray(times), np.asarray(lls)
def analyze_run(d, sdata, local_dist=1.0, predict=False):
steps, times, lls = load_log(d)
rfname = os.path.join(d, "results.txt")
results = open(rfname, 'w')
print "writing results to", rfname
for i, step in enumerate(steps):
try:
fname_X = os.path.join(d, "step_%05d_X.npy" % step)
X = np.load(fname_X)
except IOError:
X = sdata.SX
try:
fname_cov = os.path.join(d, "step_%05d_cov.npy" % step)
FC = np.load(fname_cov)
except IOError:
FC = None
l1 = sdata.mean_distance(X.flatten())
c1 = sdata.lscale_error(FC) if FC is not None else 0.00
l2 = sdata.x_prior(X.flatten())[0]
if predict:
smse_local, msll_local_block, msll_local_diag = sdata.prediction_error(X=X, cov=FC, local_dist=1.0)
if local_dist < 1.0:
smse, msll_block, msll_diag = sdata.prediction_error(X=X, cov=FC, local_dist=local_dist)
else:
smse, msll_block, msll_diag = smse_local, msll_local_block, msll_local_diag
else:
smse, smse_local, msll_local_block, msll_block, msll_local_diag, msll_diag = 0., 0., 0., 0., 0., 0.
s = "%d %.2f %.2f %.8f %.8f %.8f %.4f %.4f %.4f %.4f %.4f %.4f" % (step, times[i], lls[i], c1, l1, l2, smse_local, smse, msll_local_block, msll_block, msll_local_diag, msll_diag)
print s
results.write(s + "\n")
X = sdata.SX
l1 = sdata.mean_distance(X.flatten()) # = 0.0
c1 = 0.0
l2 = sdata.x_prior(X.flatten())[0]
if predict:
smse_local, msll_local_block, msll_local_diag = sdata.prediction_error(X=X, cov=None, local_dist=1.0)
if local_dist < 1.0:
smse, msll_block, msll_diag = sdata.prediction_error(X=X, cov=None, local_dist = local_dist)
else:
smse, msll_block, msll_diag = smse_local, msll_local_block, msll_local_diag
else:
smse, smse_local, msll_local_block, msll_block, msll_local_diag, msll_diag = 0., 0., 0., 0., 0., 0.
results.flush()
gprf = sdata.build_gprf(X=X, local_dist=local_dist)
ll1 = -np.inf
try:
if gprf.n_blocks > 1:
ll1 = gprf.llgrad()[0]
except:
pass
s = "trueX inf %.2f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f" % (ll1, c1, l1, l2, smse_local, smse, msll_local_block, msll_block, msll_local_diag, msll_diag)
print s
results.write(s + "\n")
results.close()
def grid_centers(nblocks):
pmax = np.ceil(np.sqrt(nblocks))*2+1
pts = np.linspace(0, 1, pmax)[1::2]
centers = [np.array((xx, yy)) for xx in pts for yy in pts]
return centers
def do_run(d, lscale, n, ntrain, nblocks, yd, seed=0,
fullgp=False, method=None,
obs_std=None, local_dist=1.0, maxsec=3600,
task='x', analyze_only=False, analyze_full=False,
init_seed=-1, parallel=False,
noise_var=0.01, rpc_blocksize=-1,
gplvm_type=None, num_inducing=-1,
init_true = False,):
if rpc_blocksize==-1:
centers = grid_centers(nblocks)
print "gprf with %d blocks" % (len(centers))
else:
centers = None
print "gprf with rpc blocksize %d" % rpc_blocksize
if obs_std is None:
obs_std = lscale/10
data = sample_data(n=n, ntrain=ntrain, lscale=lscale, obs_std=obs_std, yd=yd, seed=seed, centers=centers, noise_var=noise_var, rpc_blocksize=rpc_blocksize)
#if not run_gpy:
gprf = data.build_gprf(local_dist=local_dist)
if task=='x':
if init_true:
X0 = data.SX
gprf.update_X(X0)
else:
X0 = data.X_obs
C0 = None
elif task == 'cov':
X0 = None
gprf.update_X(data.SX)
if init_seed >= 0:
np.random.seed(init_seed)
C0 = np.exp(np.random.randn(1, 4)-1)
else:
C0 = np.array((0.01, 1.0, 0.05, 0.05)).reshape(1,-1)
elif task =='xcov':
X0 = data.X_obs
if init_seed >= 0:
np.random.seed(init_seed)
C0 = np.exp(np.random.randn(1, 1)-1)
X0 = X0 + np.random.randn(*X0.shape)*0.005
else:
lscale = gprf.cov.dfn_params[0]
C0 = np.array((lscale)).reshape(1,1)
else:
raise Exception("unrecognized task "+ task)
if not analyze_only:
if gplvm_type != "gprf":
do_gpy_gplvm(d, gprf, X0, C0, data, method=method,
maxsec=maxsec, parallel=parallel,
gplvm_type=gplvm_type, num_inducing=num_inducing)
else:
do_optimization(d, gprf, X0, C0, data, method=method, maxsec=maxsec, parallel=parallel)
analyze_run(d, data, local_dist=local_dist, predict=analyze_full)
def build_run_name(args):
try:
ntrain, ntest, nblocks, lscale, obs_std, local_dist, yd, method, task, init_seed, noise_var, rpc_blocksize, seed, gplvm_type, num_inducing, init_true = (args.ntrain, args.ntest, args.nblocks, args.lscale, args.obs_std, args.local_dist, args.yd, args.method, args.task, args.init_seed, args.noise_var, args.rpc_blocksize, args.seed, args.gplvm_type, args.num_inducing, args.init_true)
except:
defaults = { 'yd': 50, 'seed': 0, 'local_dist': 0.05, "method": 'l-bfgs-b', 'task': 'x', 'init_seed': -1, 'noise_var': 0.01, 'rpc_blocksize': -1, 'gplvm_type': "gprf", 'num_inducing': -1, 'init_true': False}
defaults.update(args)
args = defaults
ntrain, ntest, nblocks, lscale, obs_std, local_dist, yd, method, task, init_seed, noise_var, rpc_blocksize, seed, gplvm_type, num_inducing, init_true = (args['ntrain'], args['ntest'], args['nblocks'], args['lscale'], args['obs_std'], args['local_dist'], args['yd'], args['method'], args['task'], args['init_seed'], args['noise_var'], args['rpc_blocksize'], args['seed'], args['gplvm_type'], args['num_inducing'], args["init_true"])
run_name = "%d_%d_%s_%.6f_%.6f_%.4f_%d_%s_%s_%d_%s_s%s_%s%d" % (ntrain, ntrain+ntest, "%d" % nblocks if rpc_blocksize==-1 else "%06d" % rpc_blocksize, lscale, obs_std, local_dist, yd, method, task, -9999 if init_true else init_seed, "%.4f" % noise_var, "%d" % seed, gplvm_type, num_inducing)
return run_name
def exp_dir(args):
run_name = build_run_name(args)
exp_dir = os.path.join(EXP_DIR, run_name)
mkdir_p(exp_dir)
return exp_dir
def main():
mkdir_p(EXP_DIR)
parser = argparse.ArgumentParser(description='gprf_opt')
parser.add_argument('--ntrain', dest='ntrain', type=int, help="number of points to locate")
parser.add_argument('--ntest', dest='ntest', type=int, default=500, help="sample additional test points to evaluate predictive accuracy (not in paper)")
parser.add_argument('--nblocks', dest='nblocks', default=1, type=int, help="divides the sampled points into a grid of this many blocks. May do strange things if number is not a perfect square. Mutually exclusive with rpc_blocksize. ")
parser.add_argument('--rpc_blocksize', dest='rpc_blocksize', default=-1, type=int, help="divides the sampled points into blocks using recursive projection clustering, aiming for this target blocksize. Mutually exclusive with nblocks. ")
parser.add_argument('--lscale', dest='lscale', type=float, help="SE kernel lengthscale for the sampled functions")
parser.add_argument('--obs_std', dest='obs_std', type=float, help="std of Gaussian noise corrupting the X locations")
parser.add_argument('--local_dist', dest='local_dist', default=1.0, type=float, help="when using RPC clustering, specifies minimum kernel value necessary to connect blocks in a GPRF (1.0 corresponds to local GPs). When using grids of blocks, any setting other than 1.0 yields a GPRF with neighbor connections. ")
parser.add_argument('--method', dest='method', default="l-bfgs-b", type=str, help="any optimization method supported by scipy.optimize.minimize (l-bfgs-b)")
parser.add_argument('--seed', dest='seed', default=0, type=int, help="seed for generating synthetic data")
parser.add_argument('--yd', dest='yd', default=50, type=int, help="number of output dimensions to sample (50)")
parser.add_argument('--maxsec', dest='maxsec', default=3600, type=int, help="maximum number of seconds to run the optimization (3600)")
parser.add_argument('--task', dest='task', default="x", type=str, help="'x', 'cov', or 'xcov' to infer locations, kernel hyperparams, or both. (x)")
parser.add_argument('--analyze', dest='analyze', default=False, action="store_true", help="just analyze existing saved inference results, don't do any new inference")
parser.add_argument('--analyze_full', dest='analyze_full', default=False, action="store_true", help="do a fuller (slower) analysis that also computes predictive accuracy")
parser.add_argument('--parallel', dest='parallel', default=False, action="store_true", help="run multiple threads for local/gprf blocks. be careful when combining this with multithreaded BLAS libraries.")
parser.add_argument('--init_seed', dest='init_seed', default=-1, type=int, help="if >=0, initialize optimization to locations generated from this random seed.")
parser.add_argument('--init_true', dest='init_true', default=False, action="store_true", help="initialize optimization at true X locations instead of observed locations (False)")
parser.add_argument('--noise_var', dest='noise_var', default=0.01, type=float, help="variance of iid noise in synthetic Y values")
parser.add_argument('--gplvm_type', dest='gplvm_type', default="gprf", type=str, help = "use 'sparse' or 'bayesian' for GPy inducing point comparison (gprf)")
parser.add_argument('--num_inducing', dest='num_inducing', default=0, type=int, help="number of inducing points to use with sparse approximations")
args = parser.parse_args()
d = exp_dir(args)
do_run(d=d, lscale=args.lscale, obs_std=args.obs_std, local_dist=args.local_dist, n=args.ntrain+args.ntest, ntrain=args.ntrain, nblocks=args.nblocks, yd=args.yd, method=args.method, rpc_blocksize=args.rpc_blocksize, seed=args.seed, maxsec=args.maxsec, analyze_only=args.analyze, analyze_full = args.analyze_full, task=args.task, init_seed=args.init_seed, noise_var=args.noise_var, parallel=args.parallel, gplvm_type=args.gplvm_type, num_inducing=args.num_inducing, init_true=args.init_true)
if __name__ == "__main__":
main()