-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmaxSumArray.cpp
82 lines (82 loc) · 2.06 KB
/
maxSumArray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#include <bits/stdc++.h>
using namespace std;
int ans=INT_MIN;
// Brute Force approach // Time complexity is O(n^3)
int max_sum_subArray1(int a[],int n){
for(int sub_array_size = 1 ; sub_array_size <= n ; sub_array_size)
{
for(int start_index=0 ; start_index < n ; start_index++)
{
if(sub_array_size + start_index > n) break; //subarray exceeds array bound
int sum=0;
for(int i=start_index ; i < (start_index + sub_array_size) ; i++ )
sum+=a[i];
ans=max(ans,sum);
}
}
return ans;
}
// Efficient approach Time complexity is O(n^2)
int max_sum_subArray2(int a[],int n){
for(int start_index = 0 ; start_index < n ; start_index++){
int sum=0;
for(int sub_array_size = 1 ; sub_array_size <= n ; sub_array_size++){
if(sub_array_size + start_index > n ) break;
sum+=a[sub_array_size + start_index - 1];
ans=max(sum,ans);
}
}
return ans;
}
// More efficient approach Time complextiy is O(nLogn)
int max_sum_subArray3(int a[],int n){
if(n==1)
return a[0];
int m=n/2;
int left_MSS=max_sum_subArray3(a,m);
int right_MSS=max_sum_subArray3(a+m,n-m);
int left_sum=INT_MIN;
int right_sum=INT_MIN;
int sum=0;
for(int i=m-1 ; i>=0 ; i--){
sum+=a[i];
left_sum=max(sum,left_sum);
}
sum=0;
for(int i=m ; i<n ; i++){
sum+=a[i];
right_sum=max(sum,right_sum);
}
ans=max(left_MSS,right_MSS);
return max(ans,left_sum + right_sum);
}
// Most Efficient approach (KADANE'S ALGO) Time complexity is O(n)
int max_sum_subArray4(int a[],int n){
int sum=0;
for(int i=0;i<n;i++){
ans=max(ans,a[i]);
}
if(ans<0) return ans;
ans=0;
for(int i=0;i<n;i++){
if(sum+a[i]>0) sum+=a[i];
else sum=0;
ans=max(sum,ans);
}
return ans;
}
int main(int argc, char const *argv[])
{
ios_base::sync_with_stdio(false);
int n;
cin>>n;
int a[n];
for(int i=0;i<n;i++) cin>>a[i];
cout<<"O(n^2) approach ";
cout<<max_sum_subArray2(a,n)<<"\n";
cout<<"O(nlogn) approach ";
cout<<max_sum_subArray3(a,n)<<"\n";
cout<<"O(n) approach ";
cout<<max_sum_subArray4(a,n);
return 0;
}