forked from facebookresearch/code-prediction-transformer
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrq4_train.py
50 lines (41 loc) · 1.37 KB
/
rq4_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import argparse
from rq4_dataset import Dataset
from tokenizers import Tokenizer
from rq4_trainer import Trainer, TrainingArgs
from model import TransformerModel
import models.trav_trans.dataset
from torch.nn import CrossEntropyLoss
from torch.optim import AdamW
def main():
parser = argparse.ArgumentParser(description="Train GPT2 Model")
parser.add_argument("--batch_size", type=int, default=4, help="Specify batch size")
parser.add_argument("--num_epoch", type=int, default=3, help="Specify number of epochs")
parser.add_argument("--learning_rate", type=float, default=5e-5, help="Specify AdamW learning rate")
args = parser.parse_args()
tokenizer = Tokenizer.from_file("output/tokenizer.json")
dataset = Dataset("output/train_rq4_dps.txt")
model = TransformerModel(
tokenizer.get_vocab_size(),
CrossEntropyLoss(ignore_index=tokenizer.encode("[PAD]").ids[0]),
6,
300,
1000,
6,
1e-05
)
training_args = TrainingArgs(
batch_size = args.batch_size,
num_epoch = args.num_epoch,
output_dir = "output",
optimizer = AdamW(model.parameters(), lr=args.learning_rate),
save_model_on_epoch = False
)
trainer = Trainer(
model,
dataset,
tokenizer,
training_args
)
trainer.train()
if __name__ == "__main__":
main()