forked from os-climate/hazard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_heat_indicators.py
245 lines (218 loc) · 9.43 KB
/
test_heat_indicators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
from typing import List
import fsspec.implementations.local as local # type: ignore
import numpy as np
import pytest
import s3fs # type: ignore
import xarray as xr
import zarr # type: ignore
from dask.distributed import Client, LocalCluster
from pytest import approx
import hazard.utilities.zarr_utilities as zarr_utilities
from hazard.docs_store import DocStore
from hazard.models.degree_days import BatchItem, DegreeDays, HeatingCoolingDegreeDays
from hazard.models.work_loss import WorkLossIndicator
from hazard.sources.nex_gddp_cmip6 import NexGddpCmip6
from hazard.sources.osc_zarr import OscZarr
from tests.conftest import (
TestSource,
TestTarget,
_create_test_dataset_averaged,
_create_test_datasets_tas,
)
from .conftest import _create_test_datasets_hurs, test_output_dir # noqa: F401; pylint: disable=unused-variable
def test_degree_days_mocked():
"""Test degree days calculation based on mocked data."""
gcm = "NorESM2-MM"
scenario = "ssp585"
year = 2030
source = TestSource(_create_test_datasets_tas(), [gcm])
target = TestTarget()
# cut down the transform
model = DegreeDays(
window_years=2, gcms=[gcm], scenarios=[scenario], central_years=[year]
)
model.run_all(source, target, debug_mode=True)
with source.open_dataset_year(gcm, scenario, "tasmax", 2029) as y0:
with source.open_dataset_year(gcm, scenario, "tasmax", 2030) as y1:
scale = 365.0 / len(y0.time)
deg0 = scale * xr.where(
y0.tasmax > (32 + 273.15), y0.tasmax - (32 + 273.15), 0
).sum(dim=["time"])
deg1 = scale * xr.where(
y1.tasmax > (32 + 273.15), y1.tasmax - (32 + 273.15), 0
).sum(dim=["time"])
expected = (deg0 + deg1) / 2
assert expected.values == approx(
target.datasets[
"chronic_heat/osc/v2/mean_degree_days_v2_above_32c_NorESM2-MM_ssp585_2030"
].values
)
def test_work_loss_mocked() -> None:
"""Test degree days calculation based on mocked data."""
gcm = "NorESM2-MM"
scenario = "ssp585"
year = 2030
test_sets = _create_test_datasets_tas(quantity="tas")
test_sets.update(_create_test_datasets_hurs())
alpha_light = (32.98, 17.81)
alpha_medium = (30.94, 16.64)
alpha_heavy = (24.64, 22.72)
source = TestSource(test_sets, [gcm])
target = TestTarget()
# cut down the transform
model = WorkLossIndicator(
window_years=2, gcms=[gcm], scenarios=[scenario], central_years=[year]
)
model.run_all(source, target, debug_mode=True)
expected: List[xr.DataArray] = []
with source.open_dataset_year(gcm, scenario, "tas", 2029).tas as t0:
with source.open_dataset_year(gcm, scenario, "tas", 2030).tas as t1:
with source.open_dataset_year(gcm, scenario, "hurs", 2029).hurs as h0:
with source.open_dataset_year(gcm, scenario, "hurs", 2030).hurs as h1:
tas_c = t0 - 273.15 # convert from K to C
# vpp is water vapour partial pressure in kPa
vpp = (
(h0 / 100.0) * 6.105 * np.exp((17.27 * tas_c) / (237.7 + tas_c))
)
wbgt0 = 0.567 * tas_c + 0.393 * vpp + 3.94
tas_c = t1 - 273.15
vpp = (
(h1 / 100.0) * 6.105 * np.exp((17.27 * tas_c) / (237.7 + tas_c))
)
wbgt1 = 0.567 * tas_c + 0.393 * vpp + 3.94
for alpha1, alpha2 in [alpha_light, alpha_medium, alpha_heavy]:
wa0 = 0.1 + 0.9 / (
1.0 + (wbgt0 / alpha1) ** alpha2
) # work-ability
wlm0 = 1.0 - wa0.mean(dim=["time"]) # work-loss
wa1 = 0.1 + 0.9 / (
1.0 + (wbgt1 / alpha1) ** alpha2
) # work-ability
wlm1 = 1.0 - wa1.mean(dim=["time"]) # work-loss
expected.append((wlm0 + wlm1) / 2)
assert expected[0].values == approx(
target.datasets[
"chronic_heat/osc/v2/mean_work_loss_low_NorESM2-MM_ssp585_2030"
].values
)
def test_zarr_read_write(test_output_dir): # noqa: F811
"""Test that an xarray can be stored in xarray's native zarr format and then
read from the zarr array alone using attributes and ignoring coordinates.
"""
ds = _create_test_dataset_averaged()
store = zarr.DirectoryStore(
os.path.join(test_output_dir, "hazard_test", "hazard.zarr")
)
source = OscZarr(store=store)
source.write("test", ds.tasmax)
# ds.to_zarr(store, compute=True, group="test", mode="w", consolidated=False)
res = source.read_floored("test", [0.0, 1.0], [1.0, 2.0])
np.testing.assert_array_equal(res, [308.0, 302.0])
@pytest.mark.skip(reason="inputs large and downloading slow")
def test_degree_days(test_output_dir): # noqa: F811
"""Cut-down but still *slow* test that performs downloading of real datasets."""
gcm = "NorESM2-MM"
scenario = "ssp585"
years = [2028, 2029, 2030]
download_test_datasets(test_output_dir, gcm, scenario, years)
# source: read downloaded datasets from local file system
fs = local.LocalFileSystem()
source = NexGddpCmip6(
root=os.path.join(test_output_dir, NexGddpCmip6.bucket), fs=fs
)
# target: write zarr to load fine system
store = zarr.DirectoryStore(os.path.join(test_output_dir, "hazard", "hazard.zarr"))
target = OscZarr(store=store)
# cut down the model and run
model = HeatingCoolingDegreeDays(
window_years=1, gcms=[gcm], scenarios=[scenario], central_years=[years[0]]
)
# model = DegreeDays(window_years=1, gcms=[gcm], scenarios=[scenario], central_years=[years[0]])
model.run_all(source, target)
# check one point...
path = model._item_path(BatchItem(gcm, scenario, years[1]))
calculated = target.read_floored(path, [32.625], [15.625])
# against expected:
with source.open_dataset_year(gcm, scenario, "tasmax", years[0]) as y0:
with source.open_dataset_year(gcm, scenario, "tasmax", years[1]) as y1:
assert y0.lat[302].values == approx(15.625)
assert y0.lon[130].values == approx(32.625)
scale = 365.0 / len(y0.time)
y0p, y1p = y0.tasmax[:, 302, 130].values, y1.tasmax[:, 302, 130].values
deg0 = scale * xr.where(y0p > (32 + 273.15), y0p - (32 + 273.15), 0).sum()
deg1 = scale * xr.where(y1p > (32 + 273.15), y1p - (32 + 273.15), 0).sum()
expected = (deg0 + deg1) / 2
assert calculated == approx(expected)
@pytest.mark.skip(reason="inputs large and downloading slow")
def test_work_loss(test_output_dir): # noqa: F811
"""Cut-down but still *slow* test that performs downloading of real datasets."""
gcm = "NorESM2-MM"
scenario = "ssp585"
years = [2028, 2029, 2030]
download_test_datasets(
test_output_dir, gcm, scenario, years, indicators=["tas", "hurs"]
)
# source: read downloaded datasets from local file system
fs = local.LocalFileSystem()
source = NexGddpCmip6(
root=os.path.join(test_output_dir, NexGddpCmip6.bucket), fs=fs
)
# target: write zarr to load fine system
store = zarr.DirectoryStore(os.path.join(test_output_dir, "hazard", "hazard.zarr"))
target = OscZarr(store=store)
# cut down the model and run
model = WorkLossIndicator(
window_years=3, gcms=[gcm], scenarios=[scenario], central_years=[years[1]]
)
# resources = list(model.inventory())
# models = HazardResources(resources=resources)
# json_str = json.dumps(models.dict(), indent=4) # pretty print
local_fs = local.LocalFileSystem()
docs_store = DocStore(bucket=test_output_dir, fs=local_fs, prefix="hazard_test")
docs_store.update_inventory(model.inventory())
model.run_all(source, target)
@pytest.mark.skip(reason="just example")
def test_example_run_degree_days():
zarr_utilities.set_credential_env_variables()
docs_store = DocStore(prefix="hazard_test")
# json = docs_store.read_inventory_json()
cluster = LocalCluster(processes=False)
client = Client(cluster)
gcm = "NorESM2-MM"
scenario = "ssp585"
year = 2030
source = NexGddpCmip6()
target = OscZarr(
prefix="hazard_test"
) # test prefix is "hazard_test"; main one "hazard"
# cut down the transform
model = DegreeDays(
window_years=1, gcms=[gcm], scenarios=[scenario], central_years=[year]
)
docs_store.update_inventory(model.inventory())
items = list(model.batch_items())
model.run_single(items[0], source, target, client=client)
assert True
def download_test_datasets(
test_output_dir, # noqa: F811
gcm,
scenario,
years,
indicators=["tasmax"],
):
store = NexGddpCmip6()
s3 = s3fs.S3FileSystem(anon=True)
for year in years:
for indicator in indicators:
path, _ = store.path(gcm, scenario, indicator, year)
if not os.path.exists(os.path.join(test_output_dir, path)):
s3.download(path, os.path.join(test_output_dir, path))
assert True
@pytest.mark.skip(reason="just example")
def test_load_dataset(test_output_dir): # noqa: F811
fs = local.LocalFileSystem()
store = NexGddpCmip6(root=os.path.join(test_output_dir, "nex-gddp-cmip6"), fs=fs)
with store.open_dataset_year("NorESM2-MM", "ssp585", "tasmax", 2029) as ds:
print(ds)
assert True