|
| 1 | +import pandas as pd |
| 2 | +import os |
| 3 | +import sys |
| 4 | +from pathlib import Path |
| 5 | + |
| 6 | +def split_csv_hierarchically(input_file, output_dir='output'): |
| 7 | + """ |
| 8 | + Split a CSV file by Cluster, then Type, then Indicator. |
| 9 | + Each split removes the splitting column and adds it to the filename. |
| 10 | + |
| 11 | + Args: |
| 12 | + input_file: Path to the input CSV file |
| 13 | + output_dir: Directory where output files will be saved |
| 14 | + """ |
| 15 | + # Create output directory if it doesn't exist |
| 16 | + Path(output_dir).mkdir(parents=True, exist_ok=True) |
| 17 | + |
| 18 | + # Read the CSV file with low_memory=False to avoid dtype warnings |
| 19 | + print(f"Reading {input_file}...") |
| 20 | + df = pd.read_csv(input_file, low_memory=False) |
| 21 | + |
| 22 | + # Strip whitespace from all column headers |
| 23 | + df.columns = df.columns.str.strip() |
| 24 | + print("Stripped whitespace from column headers") |
| 25 | + |
| 26 | + # Convert Year column to integer if it exists, handling missing values |
| 27 | + if 'Year' in df.columns: |
| 28 | + # Convert to nullable integer type (Int64 instead of int64) |
| 29 | + df['Year'] = pd.to_numeric(df['Year'], errors='coerce') |
| 30 | + df['Year'] = df['Year'].astype('Int64') |
| 31 | + print("Converted 'Year' column to integers (preserving empty values)") |
| 32 | + |
| 33 | + # Clean and convert Value column if it exists |
| 34 | + if 'Value' in df.columns: |
| 35 | + # Remove commas and other non-numeric characters, then convert to number |
| 36 | + df['Value'] = df['Value'].astype(str).str.replace(',', '', regex=False) |
| 37 | + df['Value'] = df['Value'].str.replace(' ', '', regex=False) |
| 38 | + df['Value'] = pd.to_numeric(df['Value'], errors='coerce') |
| 39 | + print("Cleaned and converted 'Value' column to numbers") |
| 40 | + |
| 41 | + # Verify required columns exist |
| 42 | + required_columns = ['Cluster', 'Type', 'Indicator'] |
| 43 | + for col in required_columns: |
| 44 | + if col not in df.columns: |
| 45 | + raise ValueError(f"Column '{col}' not found in CSV. Available columns: {df.columns.tolist()}") |
| 46 | + |
| 47 | + # Get unique values for each splitting column |
| 48 | + clusters = df['Cluster'].unique() |
| 49 | + |
| 50 | + print(f"Found {len(clusters)} unique clusters") |
| 51 | + |
| 52 | + # Split by Cluster |
| 53 | + for cluster in clusters: |
| 54 | + cluster_df = df[df['Cluster'] == cluster].copy() |
| 55 | + |
| 56 | + # Get unique Types for this cluster |
| 57 | + types = cluster_df['Type'].unique() |
| 58 | + |
| 59 | + # Split by Type |
| 60 | + for type in types: |
| 61 | + type_df = cluster_df[cluster_df['Type'] == type].copy() |
| 62 | + |
| 63 | + # Get unique Indicators for this Type |
| 64 | + indicators = type_df['Indicator'].unique() |
| 65 | + |
| 66 | + # Split by Indicator |
| 67 | + for indicator in indicators: |
| 68 | + indicator_df = type_df[type_df['Indicator'] == indicator].copy() |
| 69 | + |
| 70 | + # Remove the splitting columns |
| 71 | + indicator_df = indicator_df.drop(columns=['Cluster', 'Type', 'Indicator']) |
| 72 | + |
| 73 | + # Create filename with all three values |
| 74 | + # Clean the values to make them filesystem-safe |
| 75 | + clean_cluster = str(cluster).replace('/', '_').replace('\\', '_').replace(' ', '_') |
| 76 | + clean_type = str(type).replace('/', '_').replace('\\', '_').replace(' ', '_') |
| 77 | + clean_indicator = str(indicator).replace('/', '_').replace('\\', '_').replace(' ', '_') |
| 78 | + |
| 79 | + filename = f"{clean_cluster}_{clean_type}_{clean_indicator}.csv" |
| 80 | + output_path = os.path.join(output_dir, filename) |
| 81 | + |
| 82 | + # Save the split CSV |
| 83 | + indicator_df.to_csv(output_path, index=False) |
| 84 | + print(f"Created: {filename} ({len(indicator_df)} rows)") |
| 85 | + |
| 86 | + print(f"\nAll files saved to '{output_dir}' directory") |
| 87 | + |
| 88 | +# Main execution |
| 89 | +if __name__ == "__main__": |
| 90 | + # Check if file path was provided |
| 91 | + if len(sys.argv) < 2: |
| 92 | + print("Usage: python split_csv.py <input_file.csv> [output_directory]") |
| 93 | + print("\nExamples:") |
| 94 | + print(" python split_csv.py mydata.csv") |
| 95 | + print(" python split_csv.py mydata.csv split_output") |
| 96 | + print(" python split_csv.py /path/to/mydata.csv /path/to/output") |
| 97 | + sys.exit(1) |
| 98 | + |
| 99 | + # Get input file from command line argument |
| 100 | + input_csv = sys.argv[1] |
| 101 | + |
| 102 | + # Get output directory (optional, defaults to 'output') |
| 103 | + output_dir = sys.argv[2] if len(sys.argv) > 2 else 'output' |
| 104 | + |
| 105 | + try: |
| 106 | + split_csv_hierarchically(input_csv, output_dir=output_dir) |
| 107 | + except FileNotFoundError: |
| 108 | + print(f"Error: File '{input_csv}' not found.") |
| 109 | + sys.exit(1) |
| 110 | + except Exception as e: |
| 111 | + print(f"Error: {e}") |
| 112 | + sys.exit(1) |
0 commit comments