-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcontext_encoder.py
283 lines (201 loc) · 11.6 KB
/
context_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import os
import sys
from tqdm import tqdm
import numpy as np
import torch
from torch import optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision.utils import save_image
from torchvision import transforms
from generator import generator as Generator
from discriminator import discriminator as Discriminator
from data_loader import image_loader
data_path = sys.argv[1]
results_path = sys.argv[2]
log_path = sys.argv[3]
check_points_path = sys.argv[4]
check_point_epoch = int(sys.argv[5])
img_x, img_y=128, 128
channels=3
mask_x, mask_y=64, 64
batch_size = 256
epochs=200
prev_epoch = 1
#required --> transforms Resize, to-tensor-for-pytorch, normalize
transforms_ = [
transforms.Resize((img_x, img_y)),
transforms.ToTensor(),
transforms.Normalize((.5, .5, .5), (.5, .5, .5))
]
adversarial_loss = torch.nn.BCELoss()
pixelwise_loss = torch.nn.MSELoss()
generator = Generator()
discriminator = Discriminator()
if torch.cuda.is_available():
generator.cuda()
discriminator.cuda()
pixelwise_loss.cuda()
adversarial_loss.cuda()
train_data_loader = DataLoader(
image_loader(path=data_path + '*.jpg', transforms_=transforms_,),
batch_size=batch_size,
shuffle=False,
num_workers=10
)
val_data_loader = DataLoader(
image_loader(path=data_path + '*.jpg', transforms_=transforms_, mode='val'),
batch_size=batch_size,
shuffle=False,
num_workers=10
)
generator_optimizer = torch.optim.Adam(generator.parameters(), lr=.00002, betas=(.5, .999))
discriminator_optimizer = torch.optim.Adam(discriminator.parameters(), lr=.00002, betas=(.5, .999))
try:
check_point = torch.load(check_points_path + 'check_point.pt')
if check_point is not None:
prev_epoch = check_point['epoch'] + 1
epochs = prev_epoch + 50
generator.load_state_dict(check_point['generator_state_dict'])
discriminator.load_state_dict(check_point['discriminator_state_dict'])
generator_optimizer.load_state_dict(check_point['optimizer_g_state_dict'])
discriminator_optimizer.load_state_dict(check_point['optimizer_d_state_dict'])
adversarial_loss.load_state_dict(check_point['adversarial_loss_state_dict'])
pixelwise_loss.load_state_dict(check_point['pixelwise_loss_state_dict'])
except:
pass
epoch_list = np.array(list(range(prev_epoch, epochs + 1)))
check_points = epoch_list[np.logical_or(epoch_list%check_point_epoch == 1, epoch_list == epochs)]
Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
def save_sample(epoch, loader):
act_imgs, masked_imgs, croped_inds = next(iter(loader)) #loads a batch_size of objects
act_imgs = Variable(act_imgs.type(Tensor))
masked_imgs = Variable(masked_imgs.type(Tensor))
generated_patches = generator(masked_imgs)
croped_ind = croped_inds[0].item() #same for all as we are dont center crop
filled_imgs = masked_imgs.clone()
filled_imgs[:, :, croped_ind:croped_ind+mask_x, croped_ind:croped_ind+mask_y] = generated_patches
sample = torch.cat((masked_imgs.data, filled_imgs.data, act_imgs.data), -2) # masked, filled, actual images in a row
save_image(sample, results_path + 'epoch-%d.jpg'%(epoch), nrow=6, normalize=True)
try:
# Uncomment Val parts if using validation set
if os.path.exists(log_path + 'train_log_loss_file.csv'): # and os.path.exists(log_path + 'val_log_loss_file.csv'):
train_log_loss_file = open(log_path + 'train_log_loss_file.csv', 'a')
# val_log_loss_file = open(log_path + 'val_log_loss_file.csv', 'a')
else:
raise Exception
except:
train_log_loss_file = open(log_path + 'train_log_loss_file.csv', 'w')
# val_log_loss_file = open(log_path + 'val_log_loss_file.csv', 'w')
train_log_loss_file.write('Epoch,Generator Loss,Discriminator Loss\n')
# val_log_loss_file.write('Epoch,Generator Loss\n')
pixel_loss_wt, adv_loss_wt = .999, .001
for epoch in range(prev_epoch, 1 + epochs):
#Training Phase
train_epoch_generator_loss, train_epoch_discriminator_loss = .0, .0
imgs_generated = 0
with tqdm(desc='Epoch {:<7d} Trained Batches'.format(epoch), total=len(train_data_loader)) as progress:
for i, (imgs, masked_imgs, actual_patches) in enumerate(train_data_loader):
imgs = Variable(imgs.type(Tensor))
masked_imgs = Variable(masked_imgs.type(Tensor))
actual_patches = Variable(actual_patches.type(Tensor))
# For discriminator
real_labels = Variable(Tensor(imgs.shape[0]).fill_(1.0), requires_grad=False) # real-labels
fake_labels = Variable(Tensor(imgs.shape[0]).fill_(.0), requires_grad=False) # fake-labels
# Generated Patches
generated_patches = generator(masked_imgs)
# Train Discriminator
discriminator_optimizer.zero_grad()
real_loss = adversarial_loss(discriminator(actual_patches), real_labels) # For training discriminator
# actucal patches are considered as real and generated are as
# fake hence according loss is calculated
fake_loss = adversarial_loss(discriminator(generated_patches.detach()), fake_labels)
discriminator_loss = real_loss + fake_loss
# Update Discriminator
discriminator_loss.backward()
discriminator_optimizer.step()
# Train Generator
generator_optimizer.zero_grad()
discriminator_result = discriminator(generated_patches)
adversarial_loss_g = adversarial_loss(discriminator_result, real_labels) # For training generator generated
# patches should be considered real by discriminator
overlap_wt = 10
weightedl2Mat = actual_patches.clone()
weightedl2Mat.fill_(pixel_loss_wt * overlap_wt)
weightedl2Mat.data[:, :, 4 : 60, 4 : 60] = pixel_loss_wt
pixelwise_loss_g = pixelwise_loss(generated_patches, actual_patches)
pixelwise_loss_g = (pixelwise_loss_g * weightedl2Mat)
pixelwise_loss_g = pixelwise_loss_g.mean()
# Combined Loss
generator_loss = adv_loss_wt * adversarial_loss_g + pixel_loss_wt * pixelwise_loss_g
# Update Generator
generator_loss.backward()
generator_optimizer.step()
# For logging purpose
current_batch_size = generated_patches.shape[0]
train_epoch_generator_loss += generator_loss.item() * current_batch_size
train_epoch_discriminator_loss += discriminator_loss.item() * current_batch_size
imgs_generated += current_batch_size
progress.set_postfix_str(
s='Discriminator Loss %f Generator Loss %f'%(
train_epoch_discriminator_loss / imgs_generated,
train_epoch_generator_loss / imgs_generated
),
refresh=True
)
progress.update()
# Log Epoch Metrics of Train Data
train_metrics = (epoch, train_epoch_generator_loss/len(train_data_loader.dataset), train_epoch_discriminator_loss/len(train_data_loader.dataset))
train_log_metrics = '%d,' + '%f,'*(len(train_metrics)-1)
train_log_loss_file.write(train_log_metrics[:-1]%train_metrics + '\n')
train_log_loss_file.flush()
# Uncomment if using validation parts
# val_epoch_generator_loss = .0
# imgs_generated = 0
# #Validation Phase
# with tqdm(desc='Epoch {:<7d} Validated Batches'.format(epoch), total=len(val_data_loader)) as progress:
# for i, (imgs, masked_imgs, crop_ind) in enumerate(val_data_loader): #val/testloader returns img, cropped imgs and left top corner coordinate of crop
# imgs = Variable(imgs.type(Tensor))
# masked_imgs = Variable(masked_imgs.type(Tensor))
# crop_ind = crop_ind[0].item() # For validation all are center cuts
# generated_patches = generator(masked_imgs)
# actual_patches = imgs[:, :, crop_ind : crop_ind + mask_x, crop_ind : crop_ind + mask_y].clone()
# discriminator_result = discriminator(generated_patches)
# real_labels = Variable(Tensor(imgs.shape[0]).fill_(1.0), requires_grad=False) # real-labels
# adversarial_loss_g = adversarial_loss(discriminator_result, real_labels)
# overlap_wt = 10
# weightedl2Mat = actual_patches.clone()
# weightedl2Mat.fill_(pixel_loss_wt * overlap_wt)
# weightedl2Mat.data[:, :, 4 : 60, 4 : 60] = pixel_loss_wt # 4 here is overlappred
# pixelwise_loss_g = pixelwise_loss(generated_patches, actual_patches)
# pixelwise_loss_g = (pixelwise_loss_g * weightedl2Mat).mean()
# generator_loss = pixel_loss_wt * pixelwise_loss_g + adv_loss_wt * adversarial_loss_g
# val_epoch_generator_loss += generator_loss.item() * generated_patches.shape[0]
# imgs_generated += generated_patches.shape[0]
# progress.set_postfix_str(
# s='Generator Loss %f'%(val_epoch_generator_loss / imgs_generated),
# refresh=True
# )
# progress.update()
# # Log Epoch Metrics of Validation Data
# val_metrics = (epoch, val_epoch_generator_loss / len(val_data_loader.dataset))
# val_log_metrics = '%d,%f'
# val_log_loss_file.write(val_log_metrics%val_metrics + '\n')
# val_log_loss_file.flush()
#First batch of Validation samples
if epoch % 3 == 1:
save_sample(epoch, val_data_loader)
# Save Model
if epoch in check_points:
check_point = {
'epoch': epoch,
'generator_state_dict' : generator.state_dict(),
'discriminator_state_dict' : discriminator.state_dict(),
'optimizer_g_state_dict' : generator_optimizer.state_dict(),
'optimizer_d_state_dict' : discriminator_optimizer.state_dict(),
'adversarial_loss_state_dict': adversarial_loss.state_dict(),
'pixelwise_loss_state_dict': pixelwise_loss.state_dict(),
}
torch.save(check_point, check_points_path + 'check_point.pt')
train_log_loss_file.close()
#val_log_loss_file.close()