-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAudioHelpers3.py
73 lines (54 loc) · 2.3 KB
/
AudioHelpers3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import numpy as np
import matplotlib.pyplot as plt
from scipy.io import wavfile
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
import os
import multiprocessing
import datetime
path = (os.getcwd() + '\\training\\')
def blit(dest, src, loc):
pos = [i if i >= 0 else None for i in loc]
neg = [-i if i < 0 else None for i in loc]
target = dest[[slice(i,None) for i in pos]]
src = src[[slice(i, j) for i,j in zip(neg, target.shape)]]
target[[slice(None, i) for i in src.shape]] = src
return dest
def convert_stereo(lock, filename, return_dict):
rate, fileData = wavfile.read(path + filename)
data = np.memmap(filename + ".tmp", mode='w+', shape=(2097152, 6), dtype=np.int32)
blit(data, fileData, (0,0))
leftChannels = np.delete(data, np.s_[1,3,5], axis=1)
rightChannels = np.delete(data, np.s_[0,3,4], axis=1)
leftCombined = np.sum(leftChannels, axis=1)/3
rightCombined = np.sum(rightChannels, axis=1)/3
newData = np.stack((leftCombined, rightCombined), axis=-1)
amplification = 1 / np.max(newData)
data = data #* amplification
newData = newData# * amplification
spectogram(rate, data[:,0])
return_dict[filename + 'old'] = data
return_dict[filename + 'new'] = newData
wavfile.write(path + "stereo\\" + filename, rate, newData)
def spectogram(rate, data):
cmap = plt.get_cmap('viridis') # this may fail on older versions of matplotlib
vmin = -40 # hide anything below -40 dB
cmap.set_under(color='k', alpha=None)
fig, ax = plt.subplots()
pxx, freq, t, cax = ax.specgram(data[:, 0], # first channel
Fs=rate, # to get frequency axis in Hz
cmap=cmap, vmin=vmin)
cbar = fig.colorbar(cax)
cbar.set_label('Intensity dB')
ax.axis("tight")
ax.set_xlabel('time h:mm:ss')
ax.set_ylabel('frequency kHz')
scale = 1e3 # KHz
ticks = matplotlib.ticker.FuncFormatter(lambda x, pos: '{0:g}'.format(x/scale))
ax.yaxis.set_major_formatter(ticks)
def timeTicks(x, pos):
d = datetime.timedelta(seconds=x)
return str(d)
formatter = matplotlib.ticker.FuncFormatter(timeTicks)
ax.xaxis.set_major_formatter(formatter)
plt.show()