-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChannelAdder.py
52 lines (37 loc) · 1.44 KB
/
ChannelAdder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import warnings
warnings.filterwarnings("ignore")
import os
import multiprocessing
from pathlib import Path
import AudioHelpers as ah
import kerasHelpers
kh = kerasHelpers.kerasHelpers()
import numpy as np
if __name__ == '__main__':
samples = 500;
text = input("train or predict\n")
if text == "train":
path = os.getcwd() + '\\training\\'
filenames = os.listdir(path)
sound_data = ah.prepare_training(path, filenames)
for filename in filenames:
if not filename.endswith(".wav"):
continue
stereo = np.array(sound_data[filename + "new"])
surround = np.array(sound_data[filename + "old"])
kh.create_model(samples)
kh.train(stereo, surround, samples, 4)
else:
path = os.getcwd()
filenames = os.listdir(path + '\\inputs\\')
kh.load_model(path, '\\model.h5', samples)
sound_data = ah.read_inputs(path + '\\inputs\\', filenames)
for filename in filenames:
if not filename.endswith(".wav"):
continue
print("upscaling " + filename)
prediction = kh.predict(sound_data[filename], samples)
rate = sound_ data[filename + "rate"]
data = sound_data[filename]
ah.write_wav(path + '\\outputs\\', filename, rate, np.array(prediction))
print("done converting")