-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathequivariance.py
375 lines (308 loc) · 12.7 KB
/
equivariance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import os
import cv2
import json
import wandb
import torch
import torchmetrics
import numpy as np
import torch.nn as nn
import albumentations as A
import torch.optim as optim
import torch.nn.functional as F
from tqdm import tqdm
from typing import Tuple
from pathlib import Path
from tempfile import TemporaryDirectory
from dotenv import load_dotenv, find_dotenv
from einops import rearrange, repeat, reduce
from torchvision.utils import make_grid
from torch.utils.data import DataLoader
from torch.cuda.amp import autocast, GradScaler
from albumentations.pytorch.transforms import ToTensorV2
from albumentations.augmentations.geometric.rotate import SafeRotate
from albumentations.augmentations.transforms import ColorJitter
from albumentations.augmentations.transforms import RandomBrightnessContrast
from group_unet.dataset import ButterflyDataset, BDD100K
from group_unet.group_unet import GroupUNet
from group_unet.unet import UNet
from group_unet.groups.cyclic import CyclicGroup
def compute_iou(preds: torch.Tensor, targets: torch.Tensor) -> torch.Tensor:
eps = 1e-8
intersection = (preds & targets).sum()
union = (preds | targets).sum()
iou = intersection / (union + eps)
return iou
def create_image_grid(images: torch.Tensor, labels: torch.Tensor) -> Tuple[np.ndarray, np.ndarray]:
image_grid = rearrange(make_grid(images, nrow=4), "c h w -> h w c").numpy()
mask_grid = rearrange(make_grid(repeat(labels, "b h w -> b 1 h w"), nrow=4), "c h w -> h w c").numpy()
mask_grid = reduce(mask_grid, "h w c -> h w", "max")
return image_grid, mask_grid
def preprocess_sample_images(images: torch.Tensor, transform: A.Compose) -> torch.Tensor:
images = [transform(image=image.numpy())["image"] for image in images]
images = torch.stack(images)
return images
def evaluate_metric(x: torchmetrics.Metric) -> float:
return x.compute().detach().cpu().numpy()
def prepare_butterfly_dataset(train_transform, val_transform, preprocessing):
dataset = list(Path("data", "leedsbutterfly_resized", "images").rglob("*.png"))
np.random.shuffle(dataset)
validation_ratio = 0.2
validation_size = int(len(dataset) * validation_ratio)
train_images, val_images = dataset[validation_size:], dataset[:validation_size]
dataset_split = {
"train": list(map(str, train_images)),
"valid": list(map(str, val_images)),
}
raw_train_ds = ButterflyDataset(train_images, transform=preprocessing)
raw_val_ds = ButterflyDataset(val_images, transform=preprocessing)
train_ds = ButterflyDataset(train_images, transform=train_transform)
val_ds = ButterflyDataset(val_images, transform=val_transform)
return raw_train_ds, raw_val_ds, train_ds, val_ds, dataset_split
def prepare_bdd100k_dataset(train_transform, val_transform):
train_images = list(Path("data", "bdd100k", "images", "train").rglob("*.jpg"))
val_images = list(Path("data", "bdd100k", "images", "val").rglob("*.jpg"))
raw_train_ds = BDD100K(train_images, transform=None)
raw_val_ds = BDD100K(val_images, transform=None)
train_ds = BDD100K(train_images, transform=train_transform)
val_ds = BDD100K(val_images, transform=val_transform)
return raw_train_ds, raw_val_ds, train_ds, val_ds
def train_model():
run = wandb.init(project="group-unet")
epochs = wandb.config.epochs
in_channels = wandb.config.in_channels
out_channels = wandb.config.out_channels
seed = 42
batch_size = wandb.config.batch_size
np.random.seed(seed)
model_type = wandb.config.model_type
filters = wandb.config.filters
device = "cuda" if torch.cuda.is_available() else "cpu"
kernel_size = wandb.config.kernel_size
res_block = wandb.config.res_block
if model_type == "unet":
model = UNet(
in_channels=in_channels,
out_channels=out_channels,
filters=filters,
kernel_size=kernel_size,
stride=1,
activation=F.relu,
res_block=res_block,
)
else:
model = GroupUNet(
group=CyclicGroup(4),
in_channels=in_channels,
out_channels=out_channels,
filters=filters,
kernel_size=kernel_size,
activation=F.relu,
res_block=res_block,
)
# Pad image and mask to preserve information while rotating
width = 384
preprocessing = A.Compose([
A.PadIfNeeded(width, width, border_mode=cv2.BORDER_CONSTANT, value=0),
A.Normalize(),
ToTensorV2(),
])
full_transform = A.Compose([
ColorJitter(),
RandomBrightnessContrast(),
SafeRotate(limit=90),
preprocessing,
])
val_transform = A.Compose([
A.RandomRotate90(),
preprocessing,
])
if wandb.config.full_augmentation:
train_transform = full_transform
else:
train_transform = preprocessing
(
raw_train_ds,
raw_val_ds,
train_ds,
val_ds,
dataset_split,
) = prepare_butterfly_dataset(train_transform, val_transform, preprocessing)
file = wandb.Artifact("dataset_split", type="dataset", description="Train/Validation Split")
with TemporaryDirectory() as temp_dir, open(Path(temp_dir, "dataset_split.json"), "w") as f:
json.dump(dataset_split, f, indent=4)
file.add_file(Path(temp_dir, "dataset_split.json"))
wandb.log_artifact(file)
# Log sample images
num_samples = 8
raw_train_loader = DataLoader(raw_train_ds, batch_size=batch_size, shuffle=True)
train_samples, train_samples_gt = next(iter(raw_train_loader))
train_samples = train_samples[:num_samples]
train_samples_gt = train_samples_gt[:num_samples]
train_image_grid, train_gt_grid = create_image_grid(train_samples, train_samples_gt)
train_samples = train_samples.to(device)
raw_val_loader = DataLoader(raw_val_ds, batch_size=batch_size, shuffle=True)
val_samples, val_samples_gt = next(iter(raw_val_loader))
val_samples = val_samples[:num_samples]
val_samples_gt = val_samples_gt[:num_samples]
val_image_grid, val_gt_grid = create_image_grid(val_samples, val_samples_gt)
val_samples = val_samples.to(device)
train_loader = DataLoader(
train_ds,
batch_size=batch_size,
shuffle=True,
num_workers=12,
pin_memory=True,
)
val_loader = DataLoader(
val_ds,
batch_size=batch_size,
shuffle=False,
num_workers=12,
pin_memory=True,
)
lr = wandb.config.lr
step = 0
optimizer = optim.AdamW(model.parameters(), lr=lr)
model.to(device)
display_every = 10
log_every = 5
accumulation_steps = max(1, 64 // batch_size)
THRESHOLD = 0.5
loss_fn = nn.BCEWithLogitsLoss()
for e in range(epochs):
scaler = GradScaler()
train_bar = tqdm(train_loader, ncols=0, desc=f"Train Epoch {e}")
train_loss = torchmetrics.MeanMetric().to(device)
train_acc = torchmetrics.MeanMetric().to(device)
for idx, (x, y) in enumerate(train_bar):
x = x.to(device)
y = y.to(device)
with autocast():
predictions = model(x)
predictions = rearrange(predictions, "b 1 h w -> b h w")
loss = loss_fn(predictions, y)
loss = loss / accumulation_steps
scaler.scale(loss).backward()
if (step+1) % accumulation_steps == 0:
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
jaccard = compute_iou(torch.sigmoid(predictions) > THRESHOLD, y.to(torch.uint8))
train_loss.update(loss)
train_acc.update(jaccard)
if idx % display_every == 0:
train_bar.set_postfix({
"loss": evaluate_metric(train_loss),
"accuracy": evaluate_metric(train_acc),
})
step += 1
val_loss = torchmetrics.MeanMetric().to(device)
val_acc = torchmetrics.MeanMetric().to(device)
val_bar = tqdm(val_loader, ncols=0, desc=f"Valid Epoch {e}")
with torch.no_grad():
for x, y in val_bar:
x = x.to(device)
y = y.to(device)
predictions = model(x)
predictions = rearrange(predictions, "b 1 h w -> b h w")
loss = loss_fn(predictions, y)
val_loss.update(loss)
jaccard = compute_iou(torch.sigmoid(predictions) > THRESHOLD, y.to(torch.uint8))
val_acc.update(jaccard)
if step % display_every == 0:
val_bar.set_postfix({
"loss": evaluate_metric(val_loss),
"accuracy": evaluate_metric(val_acc),
})
step += 1
metrics = {
"step": step,
"train/loss": evaluate_metric(train_loss),
"train/acc": evaluate_metric(train_acc),
"val/loss": evaluate_metric(val_loss),
"val/acc": evaluate_metric(val_acc),
}
# Add image predictions every so often
if e % log_every == 0:
train_sample_preds = torch.sigmoid(model(train_samples)) > 0.5
train_pred_grid = rearrange(make_grid(train_sample_preds, nrow=4), "c h w -> h w c").detach().cpu().numpy()
train_pred_grid = reduce(train_pred_grid, "h w c -> h w", "max")
val_sample_preds = torch.sigmoid(model(val_samples)) > 0.5
val_pred_grid = rearrange(make_grid(val_sample_preds, nrow=4), "c h w -> h w c").detach().cpu().numpy()
val_pred_grid = reduce(val_pred_grid, "h w c -> h w", "max")
# Manipulate the color to override chosen color of the foreground mask
color = 3
class_labels = {
k * color: v for k, v in train_ds.class_labels.items()
}
# Log foreground as 2 to render as a different color in wandb than the default
epoch_prediction = {
"Train Images": wandb.Image(
train_image_grid, caption="Train Predictions", masks={
"ground_truth": {
"mask_data": train_gt_grid * color,
"class_labels": class_labels,
},
"predictions": {
"mask_data": train_pred_grid * color,
"class_labels": class_labels,
},
}),
"Validation Images": wandb.Image(
val_image_grid, caption="Validation Predictions", masks={
"ground_truth": {
"mask_data": val_gt_grid * color,
"class_labels": class_labels
},
"predictions": {
"mask_data": val_pred_grid * color,
"class_labels": class_labels,
},
}),
}
metrics.update(epoch_prediction)
wandb.log(metrics)
with TemporaryDirectory() as temp_dir:
save_path = Path(temp_dir, "model.pth")
torch.save(model.state_dict(), save_path)
model_artifact = wandb.Artifact("model", type="model")
model_artifact.add_file(save_path)
run.log_artifact(model_artifact)
def sweep_run():
sweep_configuration = {
"method": "random",
"name": f"{os.environ['WANDB_USERNAME']}/group-unet/sweep",
"metric": {"goal": "minimize", "name": "val/loss"},
"parameters": {
"model_type": {"values": ["unet", "group_unet"]},
"lr": {"values": [1e-4]},
"filters": {"values": [[16, 16, 32, 32], [32, 32, 64, 64]]},
"epochs": {"values": [1]},
"kernel_size": {"values": [3]},
"batch_size": {"values": [8]},
"full_augmentation": {"values": [True, False]},
"res_block": {"values": [True]},
"in_channels": {"values": [3]},
"out_channels": {"values": [1]},
},
}
sweep_id = wandb.sweep(sweep=sweep_configuration, project="group-unet")
wandb.agent(sweep_id, function=train_model, count=1)
def single_run():
wandb.init(project="group-unet")
wandb.config.model_type = "unet"
wandb.config.filters = [32, 32, 64, 64]
wandb.config.lr = 1e-3
wandb.config.epochs = 150
wandb.config.batch_size = 32
wandb.config.kernel_size = 3
wandb.config.in_channels = 3
wandb.config.out_channels = 1
wandb.config.res_block = True
wandb.config.full_augmentation = False
train_model()
def main():
load_dotenv(find_dotenv())
single_run()
if __name__ == "__main__":
main()