We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
1. 样本量≥40,且理论频数T≥5时用卡方检验的基本公式 $$ \chi^2 = \sum \frac{(O - E)^2}{E} $$ 2. 样本量≥40,但理论频数1≤T\<5时用卡方检验校正公式; 美国统计学家F. Yates在1934年提出了一个计算卡方值的连续性校正公式 $$ \chi^2 = \sum \frac{(|O - E| - 0.5)^2}{E} $$ 其中,$O$ 是观测频数,$E$ 是期望频数,$0.5$ 是校正因子。这一校正减少了卡方统计量的值,降低了检验的偏向性,减少了假阳性结果的概率。 3. 若样本量\<40或理论频数T\<1时,需改用Fisher精确检验法进行统计分析。
请求更新数学公式块检测规则
const blockRule = /^\s*(\${1,2})\s*\n([\s\S]+?)\n\s*\1\s*(?:\n|$)/
The text was updated successfully, but these errors were encountered:
这个正则不合适,会导致渲染失败。
Sorry, something went wrong.
No branches or pull requests
请求更新数学公式块检测规则
The text was updated successfully, but these errors were encountered: