|
| 1 | +import pandas as pd |
| 2 | +import numpy as np |
| 3 | +import time |
| 4 | +import tensorflow as tf |
| 5 | +from transformers import DistilBertTokenizerFast, TFDistilBertForSequenceClassification |
| 6 | +from sklearn.model_selection import train_test_split |
| 7 | +from sklearn.metrics import classification_report |
| 8 | +import os |
| 9 | + |
| 10 | +start = time.time() |
| 11 | + |
| 12 | +df = pd.read_csv("frikk_eirik_dataset.csv") |
| 13 | + |
| 14 | +X, y = df['text_document'], df["target"] |
| 15 | + |
| 16 | +X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, random_state=42, stratify=df['target']) |
| 17 | + |
| 18 | +X_train = X_train.values.tolist() |
| 19 | +for i in range(len(X_train)): |
| 20 | + X_train[i] = str(X_train[i]) |
| 21 | +X_test = X_test.values.tolist() |
| 22 | +for i in range(len(X_test)): |
| 23 | + X_test[i] = str(X_test[i]) |
| 24 | + |
| 25 | +labels_dict = {'unrelated': 0, 'pro_ed': 1, 'pro_recovery': 2} |
| 26 | + |
| 27 | +y_train = y_train.values.tolist() |
| 28 | +for i in range(len(y_train)): |
| 29 | + y_train[i] = labels_dict[y_train[i]] |
| 30 | + |
| 31 | +y_test = y_test.values.tolist() |
| 32 | +for i in range(len(y_test)): |
| 33 | + y_test[i] = labels_dict[y_test[i]] |
| 34 | + |
| 35 | +time_a = time.time() - start |
| 36 | + |
| 37 | +tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased') |
| 38 | + |
| 39 | +train_encodings = tokenizer(X_train, truncation=True, padding=True) |
| 40 | +time_b = time.time() - time_a - start |
| 41 | +print(f"Created train encodings, time used {time_b}") |
| 42 | +test_encodings = tokenizer(X_test, truncation=True, padding=True) |
| 43 | +time_c = time.time() - time_b - time_a - start |
| 44 | +print(f"Created val encodings, time used {time_c}") |
| 45 | + |
| 46 | +train_dataset = np.array(list(dict(train_encodings).values())) |
| 47 | +test_dataset = np.array(list(dict(test_encodings).values())) |
| 48 | + |
| 49 | +BATCH_SIZE = 16 |
| 50 | + |
| 51 | +# Create a callback that saves the model's weights every x epochs |
| 52 | +checkpoint_path = "training_ckpt2/cp-{epoch:04d}.ckpt" |
| 53 | +checkpoint_dir = os.path.dirname(checkpoint_path) |
| 54 | +cp_callback = tf.keras.callbacks.ModelCheckpoint( |
| 55 | + filepath=checkpoint_path, |
| 56 | + verbose=1, |
| 57 | + save_weights_only=True) |
| 58 | + |
| 59 | +save_model = True |
| 60 | + |
| 61 | +model = TFDistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased', num_labels=3, return_dict=True) |
| 62 | + |
| 63 | +if save_model: |
| 64 | + optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5) |
| 65 | + model.compile(optimizer=optimizer, loss=model.compute_loss, metrics=['accuracy']) |
| 66 | + |
| 67 | + model.fit( |
| 68 | + train_dataset[0], |
| 69 | + np.array(y_train), |
| 70 | + epochs=5, |
| 71 | + batch_size=BATCH_SIZE, |
| 72 | + callbacks=[cp_callback] |
| 73 | + ) |
| 74 | + |
| 75 | +else: |
| 76 | + latest = tf.train.latest_checkpoint(checkpoint_dir) |
| 77 | + model.load_weights(latest) |
| 78 | + |
| 79 | +preds = model.predict(test_dataset[0])["logits"] |
| 80 | + |
| 81 | +classes = np.argmax(preds, axis=-1) |
| 82 | + |
| 83 | +score = classification_report(y_test, classes, digits=3) |
| 84 | +print(score) |
| 85 | + |
| 86 | +total = time.time() - start |
| 87 | +print(f"Done in: {total}") |
0 commit comments