Skip to content

Commit d11ad06

Browse files
authored
Sync docs and metadata (#90)
1 parent e7bcda5 commit d11ad06

File tree

3 files changed

+31
-29
lines changed

3 files changed

+31
-29
lines changed
Original file line numberDiff line numberDiff line change
@@ -1,29 +1,3 @@
11
# Instructions
22

3-
The Collatz Conjecture or 3x+1 problem can be summarized as follows:
4-
5-
Take any positive integer n.
6-
If n is even, divide n by 2 to get n / 2.
7-
If n is odd, multiply n by 3 and add 1 to get 3n + 1.
8-
Repeat the process indefinitely.
9-
The conjecture states that no matter which number you start with, you will always reach 1 eventually.
10-
11-
Given a number n, return the number of steps required to reach 1.
12-
13-
## Examples
14-
15-
Starting with n = 12, the steps would be as follows:
16-
17-
0. 12
18-
1. 6
19-
2. 3
20-
3. 10
21-
4. 5
22-
5. 16
23-
6. 8
24-
7. 4
25-
8. 2
26-
9. 1
27-
28-
Resulting in 9 steps.
29-
So for input n = 12, the return value would be 9.
3+
Given a positive integer, return the number of steps it takes to reach 1 according to the rules of the Collatz Conjecture.
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,28 @@
1+
# Introduction
2+
3+
One evening, you stumbled upon an old notebook filled with cryptic scribbles, as though someone had been obsessively chasing an idea.
4+
On one page, a single question stood out: **Can every number find its way to 1?**
5+
It was tied to something called the **Collatz Conjecture**, a puzzle that has baffled thinkers for decades.
6+
7+
The rules were deceptively simple.
8+
Pick any positive integer.
9+
10+
- If it's even, divide it by 2.
11+
- If it's odd, multiply it by 3 and add 1.
12+
13+
Then, repeat these steps with the result, continuing indefinitely.
14+
15+
Curious, you picked number 12 to test and began the journey:
16+
17+
12 ➜ 6 ➜ 3 ➜ 10 ➜ 5 ➜ 16 ➜ 8 ➜ 4 ➜ 2 ➜ 1
18+
19+
Counting from the second number (6), it took 9 steps to reach 1, and each time the rules repeated, the number kept changing.
20+
At first, the sequence seemed unpredictable — jumping up, down, and all over.
21+
Yet, the conjecture claims that no matter the starting number, we'll always end at 1.
22+
23+
It was fascinating, but also puzzling.
24+
Why does this always seem to work?
25+
Could there be a number where the process breaks down, looping forever or escaping into infinity?
26+
The notebook suggested solving this could reveal something profound — and with it, fame, [fortune][collatz-prize], and a place in history awaits whoever could unlock its secrets.
27+
28+
[collatz-prize]: https://mathprize.net/posts/collatz-conjecture/

exercises/practice/collatz-conjecture/.meta/config.json

+2-2
Original file line numberDiff line numberDiff line change
@@ -17,6 +17,6 @@
1717
]
1818
},
1919
"blurb": "Calculate the number of steps to reach 1 using the Collatz conjecture.",
20-
"source": "An unsolved problem in mathematics named after mathematician Lothar Collatz",
21-
"source_url": "https://en.wikipedia.org/wiki/3x_%2B_1_problem"
20+
"source": "Wikipedia",
21+
"source_url": "https://en.wikipedia.org/wiki/Collatz_conjecture"
2222
}

0 commit comments

Comments
 (0)