forked from bitcoin/bitcoin
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmuhash.cpp
584 lines (526 loc) · 21.8 KB
/
muhash.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
// Copyright (c) 2017-present The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <crypto/muhash.h>
#include <crypto/chacha20.h>
#include <crypto/common.h>
#include <hash.h>
#include <util/check.h>
#include <bit>
#include <cassert>
#include <cstdio>
#include <limits>
namespace {
using limb_t = Num3072::limb_t;
using signed_limb_t = Num3072::signed_limb_t;
using double_limb_t = Num3072::double_limb_t;
using signed_double_limb_t = Num3072::signed_double_limb_t;
constexpr int LIMB_SIZE = Num3072::LIMB_SIZE;
constexpr int SIGNED_LIMB_SIZE = Num3072::SIGNED_LIMB_SIZE;
constexpr int LIMBS = Num3072::LIMBS;
constexpr int SIGNED_LIMBS = Num3072::SIGNED_LIMBS;
constexpr int FINAL_LIMB_POSITION = 3072 / SIGNED_LIMB_SIZE;
constexpr int FINAL_LIMB_MODULUS_BITS = 3072 % SIGNED_LIMB_SIZE;
constexpr limb_t MAX_LIMB = (limb_t)(-1);
constexpr limb_t MAX_SIGNED_LIMB = (((limb_t)1) << SIGNED_LIMB_SIZE) - 1;
/** 2^3072 - 1103717, the largest 3072-bit safe prime number, is used as the modulus. */
constexpr limb_t MAX_PRIME_DIFF = 1103717;
/** The modular inverse of (2**3072 - MAX_PRIME_DIFF) mod (MAX_SIGNED_LIMB + 1). */
constexpr limb_t MODULUS_INVERSE = limb_t(0x70a1421da087d93);
/** Extract the lowest limb of [c0,c1,c2] into n, and left shift the number by 1 limb. */
inline void extract3(limb_t& c0, limb_t& c1, limb_t& c2, limb_t& n)
{
n = c0;
c0 = c1;
c1 = c2;
c2 = 0;
}
/** [c0,c1] = a * b */
inline void mul(limb_t& c0, limb_t& c1, const limb_t& a, const limb_t& b)
{
double_limb_t t = (double_limb_t)a * b;
c1 = t >> LIMB_SIZE;
c0 = t;
}
/* [c0,c1,c2] += n * [d0,d1,d2]. c2 is 0 initially */
inline void mulnadd3(limb_t& c0, limb_t& c1, limb_t& c2, limb_t& d0, limb_t& d1, limb_t& d2, const limb_t& n)
{
double_limb_t t = (double_limb_t)d0 * n + c0;
c0 = t;
t >>= LIMB_SIZE;
t += (double_limb_t)d1 * n + c1;
c1 = t;
t >>= LIMB_SIZE;
c2 = t + d2 * n;
}
/* [c0,c1] *= n */
inline void muln2(limb_t& c0, limb_t& c1, const limb_t& n)
{
double_limb_t t = (double_limb_t)c0 * n;
c0 = t;
t >>= LIMB_SIZE;
t += (double_limb_t)c1 * n;
c1 = t;
}
/** [c0,c1,c2] += a * b */
inline void muladd3(limb_t& c0, limb_t& c1, limb_t& c2, const limb_t& a, const limb_t& b)
{
double_limb_t t = (double_limb_t)a * b;
limb_t th = t >> LIMB_SIZE;
limb_t tl = t;
c0 += tl;
th += (c0 < tl) ? 1 : 0;
c1 += th;
c2 += (c1 < th) ? 1 : 0;
}
/**
* Add limb a to [c0,c1]: [c0,c1] += a. Then extract the lowest
* limb of [c0,c1] into n, and left shift the number by 1 limb.
* */
inline void addnextract2(limb_t& c0, limb_t& c1, const limb_t& a, limb_t& n)
{
limb_t c2 = 0;
// add
c0 += a;
if (c0 < a) {
c1 += 1;
// Handle case when c1 has overflown
if (c1 == 0) c2 = 1;
}
// extract
n = c0;
c0 = c1;
c1 = c2;
}
} // namespace
/** Indicates whether d is larger than the modulus. */
bool Num3072::IsOverflow() const
{
if (this->limbs[0] <= std::numeric_limits<limb_t>::max() - MAX_PRIME_DIFF) return false;
for (int i = 1; i < LIMBS; ++i) {
if (this->limbs[i] != std::numeric_limits<limb_t>::max()) return false;
}
return true;
}
void Num3072::FullReduce()
{
limb_t c0 = MAX_PRIME_DIFF;
limb_t c1 = 0;
for (int i = 0; i < LIMBS; ++i) {
addnextract2(c0, c1, this->limbs[i], this->limbs[i]);
}
}
namespace {
/** A type representing a number in signed limb representation. */
struct Num3072Signed
{
/** The represented value is sum(limbs[i]*2^(SIGNED_LIMB_SIZE*i), i=0..SIGNED_LIMBS-1).
* Note that limbs may be negative, or exceed 2^SIGNED_LIMB_SIZE-1. */
signed_limb_t limbs[SIGNED_LIMBS];
/** Construct a Num3072Signed with value 0. */
Num3072Signed()
{
memset(limbs, 0, sizeof(limbs));
}
/** Convert a Num3072 to a Num3072Signed. Output will be normalized and in
* range 0..2^3072-1. */
void FromNum3072(const Num3072& in)
{
double_limb_t c = 0;
int b = 0, outpos = 0;
for (int i = 0; i < LIMBS; ++i) {
c += double_limb_t{in.limbs[i]} << b;
b += LIMB_SIZE;
while (b >= SIGNED_LIMB_SIZE) {
limbs[outpos++] = limb_t(c) & MAX_SIGNED_LIMB;
c >>= SIGNED_LIMB_SIZE;
b -= SIGNED_LIMB_SIZE;
}
}
Assume(outpos == SIGNED_LIMBS - 1);
limbs[SIGNED_LIMBS - 1] = c;
c >>= SIGNED_LIMB_SIZE;
Assume(c == 0);
}
/** Convert a Num3072Signed to a Num3072. Input must be in range 0..modulus-1. */
void ToNum3072(Num3072& out) const
{
double_limb_t c = 0;
int b = 0, outpos = 0;
for (int i = 0; i < SIGNED_LIMBS; ++i) {
c += double_limb_t(limbs[i]) << b;
b += SIGNED_LIMB_SIZE;
if (b >= LIMB_SIZE) {
out.limbs[outpos++] = c;
c >>= LIMB_SIZE;
b -= LIMB_SIZE;
}
}
Assume(outpos == LIMBS);
Assume(c == 0);
}
/** Take a Num3072Signed in range 1-2*2^3072..2^3072-1, and:
* - optionally negate it (if negate is true)
* - reduce it modulo the modulus (2^3072 - MAX_PRIME_DIFF)
* - produce output with all limbs in range 0..2^SIGNED_LIMB_SIZE-1
*/
void Normalize(bool negate)
{
// Add modulus if this was negative. This brings the range of *this to 1-2^3072..2^3072-1.
signed_limb_t cond_add = limbs[SIGNED_LIMBS-1] >> (LIMB_SIZE-1); // -1 if this is negative; 0 otherwise
limbs[0] += signed_limb_t(-MAX_PRIME_DIFF) & cond_add;
limbs[FINAL_LIMB_POSITION] += (signed_limb_t(1) << FINAL_LIMB_MODULUS_BITS) & cond_add;
// Next negate all limbs if negate was set. This does not change the range of *this.
signed_limb_t cond_negate = -signed_limb_t(negate); // -1 if this negate is true; 0 otherwise
for (int i = 0; i < SIGNED_LIMBS; ++i) {
limbs[i] = (limbs[i] ^ cond_negate) - cond_negate;
}
// Perform carry (make all limbs except the top one be in range 0..2^SIGNED_LIMB_SIZE-1).
for (int i = 0; i < SIGNED_LIMBS - 1; ++i) {
limbs[i + 1] += limbs[i] >> SIGNED_LIMB_SIZE;
limbs[i] &= MAX_SIGNED_LIMB;
}
// Again add modulus if *this was negative. This brings the range of *this to 0..2^3072-1.
cond_add = limbs[SIGNED_LIMBS-1] >> (LIMB_SIZE-1); // -1 if this is negative; 0 otherwise
limbs[0] += signed_limb_t(-MAX_PRIME_DIFF) & cond_add;
limbs[FINAL_LIMB_POSITION] += (signed_limb_t(1) << FINAL_LIMB_MODULUS_BITS) & cond_add;
// Perform another carry. Now all limbs are in range 0..2^SIGNED_LIMB_SIZE-1.
for (int i = 0; i < SIGNED_LIMBS - 1; ++i) {
limbs[i + 1] += limbs[i] >> SIGNED_LIMB_SIZE;
limbs[i] &= MAX_SIGNED_LIMB;
}
}
};
/** 2x2 transformation matrix with signed_limb_t elements. */
struct SignedMatrix
{
signed_limb_t u, v, q, r;
};
/** Compute the transformation matrix for SIGNED_LIMB_SIZE divsteps.
*
* eta: initial eta value
* f: bottom SIGNED_LIMB_SIZE bits of initial f value
* g: bottom SIGNED_LIMB_SIZE bits of initial g value
* out: resulting transformation matrix, scaled by 2^SIGNED_LIMB_SIZE
* return: eta value after SIGNED_LIMB_SIZE divsteps
*/
inline limb_t ComputeDivstepMatrix(signed_limb_t eta, limb_t f, limb_t g, SignedMatrix& out)
{
/** inv256[i] = -1/(2*i+1) (mod 256) */
static const uint8_t NEGINV256[128] = {
0xFF, 0x55, 0x33, 0x49, 0xC7, 0x5D, 0x3B, 0x11, 0x0F, 0xE5, 0xC3, 0x59,
0xD7, 0xED, 0xCB, 0x21, 0x1F, 0x75, 0x53, 0x69, 0xE7, 0x7D, 0x5B, 0x31,
0x2F, 0x05, 0xE3, 0x79, 0xF7, 0x0D, 0xEB, 0x41, 0x3F, 0x95, 0x73, 0x89,
0x07, 0x9D, 0x7B, 0x51, 0x4F, 0x25, 0x03, 0x99, 0x17, 0x2D, 0x0B, 0x61,
0x5F, 0xB5, 0x93, 0xA9, 0x27, 0xBD, 0x9B, 0x71, 0x6F, 0x45, 0x23, 0xB9,
0x37, 0x4D, 0x2B, 0x81, 0x7F, 0xD5, 0xB3, 0xC9, 0x47, 0xDD, 0xBB, 0x91,
0x8F, 0x65, 0x43, 0xD9, 0x57, 0x6D, 0x4B, 0xA1, 0x9F, 0xF5, 0xD3, 0xE9,
0x67, 0xFD, 0xDB, 0xB1, 0xAF, 0x85, 0x63, 0xF9, 0x77, 0x8D, 0x6B, 0xC1,
0xBF, 0x15, 0xF3, 0x09, 0x87, 0x1D, 0xFB, 0xD1, 0xCF, 0xA5, 0x83, 0x19,
0x97, 0xAD, 0x8B, 0xE1, 0xDF, 0x35, 0x13, 0x29, 0xA7, 0x3D, 0x1B, 0xF1,
0xEF, 0xC5, 0xA3, 0x39, 0xB7, 0xCD, 0xAB, 0x01
};
// Coefficients of returned SignedMatrix; starts off as identity matrix. */
limb_t u = 1, v = 0, q = 0, r = 1;
// The number of divsteps still left.
int i = SIGNED_LIMB_SIZE;
while (true) {
/* Use a sentinel bit to count zeros only up to i. */
int zeros = std::countr_zero(g | (MAX_LIMB << i));
/* Perform zeros divsteps at once; they all just divide g by two. */
g >>= zeros;
u <<= zeros;
v <<= zeros;
eta -= zeros;
i -= zeros;
/* We're done once we've performed SIGNED_LIMB_SIZE divsteps. */
if (i == 0) break;
/* If eta is negative, negate it and replace f,g with g,-f. */
if (eta < 0) {
limb_t tmp;
eta = -eta;
tmp = f; f = g; g = -tmp;
tmp = u; u = q; q = -tmp;
tmp = v; v = r; r = -tmp;
}
/* eta is now >= 0. In what follows we're going to cancel out the bottom bits of g. No more
* than i can be cancelled out (as we'd be done before that point), and no more than eta+1
* can be done as its sign will flip once that happens. */
int limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
/* m is a mask for the bottom min(limit, 8) bits (our table only supports 8 bits). */
limb_t m = (MAX_LIMB >> (LIMB_SIZE - limit)) & 255U;
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 8) bits. */
limb_t w = (g * NEGINV256[(f >> 1) & 127]) & m;
/* Do so. */
g += f * w;
q += u * w;
r += v * w;
}
out.u = (signed_limb_t)u;
out.v = (signed_limb_t)v;
out.q = (signed_limb_t)q;
out.r = (signed_limb_t)r;
return eta;
}
/** Apply matrix t/2^SIGNED_LIMB_SIZE to vector [d,e], modulo modulus.
*
* On input and output, d and e are in range 1-2*modulus..modulus-1.
*/
inline void UpdateDE(Num3072Signed& d, Num3072Signed& e, const SignedMatrix& t)
{
const signed_limb_t u = t.u, v=t.v, q=t.q, r=t.r;
/* [md,me] start as zero; plus [u,q] if d is negative; plus [v,r] if e is negative. */
signed_limb_t sd = d.limbs[SIGNED_LIMBS - 1] >> (LIMB_SIZE - 1);
signed_limb_t se = e.limbs[SIGNED_LIMBS - 1] >> (LIMB_SIZE - 1);
signed_limb_t md = (u & sd) + (v & se);
signed_limb_t me = (q & sd) + (r & se);
/* Begin computing t*[d,e]. */
signed_limb_t di = d.limbs[0], ei = e.limbs[0];
signed_double_limb_t cd = (signed_double_limb_t)u * di + (signed_double_limb_t)v * ei;
signed_double_limb_t ce = (signed_double_limb_t)q * di + (signed_double_limb_t)r * ei;
/* Correct md,me so that t*[d,e]+modulus*[md,me] has SIGNED_LIMB_SIZE zero bottom bits. */
md -= (MODULUS_INVERSE * limb_t(cd) + md) & MAX_SIGNED_LIMB;
me -= (MODULUS_INVERSE * limb_t(ce) + me) & MAX_SIGNED_LIMB;
/* Update the beginning of computation for t*[d,e]+modulus*[md,me] now md,me are known. */
cd -= (signed_double_limb_t)1103717 * md;
ce -= (signed_double_limb_t)1103717 * me;
/* Verify that the low SIGNED_LIMB_SIZE bits of the computation are indeed zero, and then throw them away. */
Assume((cd & MAX_SIGNED_LIMB) == 0);
Assume((ce & MAX_SIGNED_LIMB) == 0);
cd >>= SIGNED_LIMB_SIZE;
ce >>= SIGNED_LIMB_SIZE;
/* Now iteratively compute limb i=1..SIGNED_LIMBS-2 of t*[d,e]+modulus*[md,me], and store them in output
* limb i-1 (shifting down by SIGNED_LIMB_SIZE bits). The corresponding limbs in modulus are all zero,
* so modulus/md/me are not actually involved here. */
for (int i = 1; i < SIGNED_LIMBS - 1; ++i) {
di = d.limbs[i];
ei = e.limbs[i];
cd += (signed_double_limb_t)u * di + (signed_double_limb_t)v * ei;
ce += (signed_double_limb_t)q * di + (signed_double_limb_t)r * ei;
d.limbs[i - 1] = (signed_limb_t)cd & MAX_SIGNED_LIMB; cd >>= SIGNED_LIMB_SIZE;
e.limbs[i - 1] = (signed_limb_t)ce & MAX_SIGNED_LIMB; ce >>= SIGNED_LIMB_SIZE;
}
/* Compute limb SIGNED_LIMBS-1 of t*[d,e]+modulus*[md,me], and store it in output limb SIGNED_LIMBS-2. */
di = d.limbs[SIGNED_LIMBS - 1];
ei = e.limbs[SIGNED_LIMBS - 1];
cd += (signed_double_limb_t)u * di + (signed_double_limb_t)v * ei;
ce += (signed_double_limb_t)q * di + (signed_double_limb_t)r * ei;
cd += (signed_double_limb_t)md << FINAL_LIMB_MODULUS_BITS;
ce += (signed_double_limb_t)me << FINAL_LIMB_MODULUS_BITS;
d.limbs[SIGNED_LIMBS - 2] = (signed_limb_t)cd & MAX_SIGNED_LIMB; cd >>= SIGNED_LIMB_SIZE;
e.limbs[SIGNED_LIMBS - 2] = (signed_limb_t)ce & MAX_SIGNED_LIMB; ce >>= SIGNED_LIMB_SIZE;
/* What remains goes into output limb SINGED_LIMBS-1 */
d.limbs[SIGNED_LIMBS - 1] = (signed_limb_t)cd;
e.limbs[SIGNED_LIMBS - 1] = (signed_limb_t)ce;
}
/** Apply matrix t/2^SIGNED_LIMB_SIZE to vector (f,g).
*
* The matrix t must be chosen such that t*(f,g) results in multiples of 2^SIGNED_LIMB_SIZE.
* This is the case for matrices computed by ComputeDivstepMatrix().
*/
inline void UpdateFG(Num3072Signed& f, Num3072Signed& g, const SignedMatrix& t, int len)
{
const signed_limb_t u = t.u, v=t.v, q=t.q, r=t.r;
signed_limb_t fi, gi;
signed_double_limb_t cf, cg;
/* Start computing t*[f,g]. */
fi = f.limbs[0];
gi = g.limbs[0];
cf = (signed_double_limb_t)u * fi + (signed_double_limb_t)v * gi;
cg = (signed_double_limb_t)q * fi + (signed_double_limb_t)r * gi;
/* Verify that the bottom SIGNED_LIMB_BITS bits of the result are zero, and then throw them away. */
Assume((cf & MAX_SIGNED_LIMB) == 0);
Assume((cg & MAX_SIGNED_LIMB) == 0);
cf >>= SIGNED_LIMB_SIZE;
cg >>= SIGNED_LIMB_SIZE;
/* Now iteratively compute limb i=1..SIGNED_LIMBS-1 of t*[f,g], and store them in output limb i-1 (shifting
* down by SIGNED_LIMB_BITS bits). */
for (int i = 1; i < len; ++i) {
fi = f.limbs[i];
gi = g.limbs[i];
cf += (signed_double_limb_t)u * fi + (signed_double_limb_t)v * gi;
cg += (signed_double_limb_t)q * fi + (signed_double_limb_t)r * gi;
f.limbs[i - 1] = (signed_limb_t)cf & MAX_SIGNED_LIMB; cf >>= SIGNED_LIMB_SIZE;
g.limbs[i - 1] = (signed_limb_t)cg & MAX_SIGNED_LIMB; cg >>= SIGNED_LIMB_SIZE;
}
/* What remains is limb SIGNED_LIMBS of t*[f,g]; store it as output limb SIGNED_LIMBS-1. */
f.limbs[len - 1] = (signed_limb_t)cf;
g.limbs[len - 1] = (signed_limb_t)cg;
}
} // namespace
Num3072 Num3072::GetInverse() const
{
// Compute a modular inverse based on a variant of the safegcd algorithm:
// - Paper: https://gcd.cr.yp.to/papers.html
// - Inspired by this code in libsecp256k1:
// https://github.com/bitcoin-core/secp256k1/blob/master/src/modinv32_impl.h
// - Explanation of the algorithm:
// https://github.com/bitcoin-core/secp256k1/blob/master/doc/safegcd_implementation.md
// Local variables d, e, f, g:
// - f and g are the variables whose gcd we compute (despite knowing the answer is 1):
// - f is always odd, and initialized as modulus
// - g is initialized as *this (called x in what follows)
// - d and e are the numbers for which at every step it is the case that:
// - f = d * x mod modulus; d is initialized as 0
// - g = e * x mod modulus; e is initialized as 1
Num3072Signed d, e, f, g;
e.limbs[0] = 1;
// F is initialized as modulus, which in signed limb representation can be expressed
// simply as 2^3072 + -MAX_PRIME_DIFF.
f.limbs[0] = -MAX_PRIME_DIFF;
f.limbs[FINAL_LIMB_POSITION] = ((limb_t)1) << FINAL_LIMB_MODULUS_BITS;
g.FromNum3072(*this);
int len = SIGNED_LIMBS; //!< The number of significant limbs in f and g
signed_limb_t eta = -1; //!< State to track knowledge about ratio of f and g
// Perform divsteps on [f,g] until g=0 is reached, keeping (d,e) synchronized with them.
while (true) {
// Compute transformation matrix t that represents the next SIGNED_LIMB_SIZE divsteps
// to apply. This can be computed from just the bottom limb of f and g, and eta.
SignedMatrix t;
eta = ComputeDivstepMatrix(eta, f.limbs[0], g.limbs[0], t);
// Apply that transformation matrix to the full [f,g] vector.
UpdateFG(f, g, t, len);
// Apply that transformation matrix to the full [d,e] vector (mod modulus).
UpdateDE(d, e, t);
// Check if g is zero.
if (g.limbs[0] == 0) {
signed_limb_t cond = 0;
for (int j = 1; j < len; ++j) {
cond |= g.limbs[j];
}
// If so, we're done.
if (cond == 0) break;
}
// Check if the top limbs of both f and g are both 0 or -1.
signed_limb_t fn = f.limbs[len - 1], gn = g.limbs[len - 1];
signed_limb_t cond = ((signed_limb_t)len - 2) >> (LIMB_SIZE - 1);
cond |= fn ^ (fn >> (LIMB_SIZE - 1));
cond |= gn ^ (gn >> (LIMB_SIZE - 1));
if (cond == 0) {
// If so, drop the top limb, shrinking the size of f and g, by
// propagating the sign to the previous limb.
f.limbs[len - 2] |= (limb_t)f.limbs[len - 1] << SIGNED_LIMB_SIZE;
g.limbs[len - 2] |= (limb_t)g.limbs[len - 1] << SIGNED_LIMB_SIZE;
--len;
}
}
// At some point, [f,g] will have been rewritten into [f',0], such that gcd(f,g) = gcd(f',0).
// This is proven in the paper. As f started out being modulus, a prime number, we know that
// gcd is 1, and thus f' is 1 or -1.
Assume((f.limbs[0] & MAX_SIGNED_LIMB) == 1 || (f.limbs[0] & MAX_SIGNED_LIMB) == MAX_SIGNED_LIMB);
// As we've maintained the invariant that f = d * x mod modulus, we get d/f mod modulus is the
// modular inverse of x we're looking for. As f is 1 or -1, it is also true that d/f = d*f.
// Normalize d to prepare it for output, while negating it if f is negative.
d.Normalize(f.limbs[len - 1] >> (LIMB_SIZE - 1));
Num3072 ret;
d.ToNum3072(ret);
return ret;
}
void Num3072::Multiply(const Num3072& a)
{
limb_t c0 = 0, c1 = 0, c2 = 0;
Num3072 tmp;
/* Compute limbs 0..N-2 of this*a into tmp, including one reduction. */
for (int j = 0; j < LIMBS - 1; ++j) {
limb_t d0 = 0, d1 = 0, d2 = 0;
mul(d0, d1, this->limbs[1 + j], a.limbs[LIMBS + j - (1 + j)]);
for (int i = 2 + j; i < LIMBS; ++i) muladd3(d0, d1, d2, this->limbs[i], a.limbs[LIMBS + j - i]);
mulnadd3(c0, c1, c2, d0, d1, d2, MAX_PRIME_DIFF);
for (int i = 0; i < j + 1; ++i) muladd3(c0, c1, c2, this->limbs[i], a.limbs[j - i]);
extract3(c0, c1, c2, tmp.limbs[j]);
}
/* Compute limb N-1 of a*b into tmp. */
assert(c2 == 0);
for (int i = 0; i < LIMBS; ++i) muladd3(c0, c1, c2, this->limbs[i], a.limbs[LIMBS - 1 - i]);
extract3(c0, c1, c2, tmp.limbs[LIMBS - 1]);
/* Perform a second reduction. */
muln2(c0, c1, MAX_PRIME_DIFF);
for (int j = 0; j < LIMBS; ++j) {
addnextract2(c0, c1, tmp.limbs[j], this->limbs[j]);
}
assert(c1 == 0);
assert(c0 == 0 || c0 == 1);
/* Perform up to two more reductions if the internal state has already
* overflown the MAX of Num3072 or if it is larger than the modulus or
* if both are the case.
* */
if (this->IsOverflow()) this->FullReduce();
if (c0) this->FullReduce();
}
void Num3072::SetToOne()
{
this->limbs[0] = 1;
for (int i = 1; i < LIMBS; ++i) this->limbs[i] = 0;
}
void Num3072::Divide(const Num3072& a)
{
if (this->IsOverflow()) this->FullReduce();
Num3072 inv{};
if (a.IsOverflow()) {
Num3072 b = a;
b.FullReduce();
inv = b.GetInverse();
} else {
inv = a.GetInverse();
}
this->Multiply(inv);
if (this->IsOverflow()) this->FullReduce();
}
Num3072::Num3072(const unsigned char (&data)[BYTE_SIZE]) {
for (int i = 0; i < LIMBS; ++i) {
if (sizeof(limb_t) == 4) {
this->limbs[i] = ReadLE32(data + 4 * i);
} else if (sizeof(limb_t) == 8) {
this->limbs[i] = ReadLE64(data + 8 * i);
}
}
}
void Num3072::ToBytes(unsigned char (&out)[BYTE_SIZE]) {
for (int i = 0; i < LIMBS; ++i) {
if (sizeof(limb_t) == 4) {
WriteLE32(out + i * 4, this->limbs[i]);
} else if (sizeof(limb_t) == 8) {
WriteLE64(out + i * 8, this->limbs[i]);
}
}
}
Num3072 MuHash3072::ToNum3072(std::span<const unsigned char> in) {
unsigned char tmp[Num3072::BYTE_SIZE];
uint256 hashed_in{(HashWriter{} << in).GetSHA256()};
static_assert(sizeof(tmp) % ChaCha20Aligned::BLOCKLEN == 0);
ChaCha20Aligned{MakeByteSpan(hashed_in)}.Keystream(MakeWritableByteSpan(tmp));
Num3072 out{tmp};
return out;
}
MuHash3072::MuHash3072(std::span<const unsigned char> in) noexcept
{
m_numerator = ToNum3072(in);
}
void MuHash3072::Finalize(uint256& out) noexcept
{
m_numerator.Divide(m_denominator);
m_denominator.SetToOne(); // Needed to keep the MuHash object valid
unsigned char data[Num3072::BYTE_SIZE];
m_numerator.ToBytes(data);
out = (HashWriter{} << data).GetSHA256();
}
MuHash3072& MuHash3072::operator*=(const MuHash3072& mul) noexcept
{
m_numerator.Multiply(mul.m_numerator);
m_denominator.Multiply(mul.m_denominator);
return *this;
}
MuHash3072& MuHash3072::operator/=(const MuHash3072& div) noexcept
{
m_numerator.Multiply(div.m_denominator);
m_denominator.Multiply(div.m_numerator);
return *this;
}
MuHash3072& MuHash3072::Insert(std::span<const unsigned char> in) noexcept {
m_numerator.Multiply(ToNum3072(in));
return *this;
}
MuHash3072& MuHash3072::Remove(std::span<const unsigned char> in) noexcept {
m_denominator.Multiply(ToNum3072(in));
return *this;
}